Mpk-prometey.ru

МПК Прометей
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ob3353cpa ограничение тока подсветки

hardlock.org.ua

Для полноценной работы рекомендуется пройти регистрацию.

Рекламные сообщения будут удаляться вместе с пользователем. Что есть реклама — буду решать я.

Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 12 фев 2012 16:06

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 28 фев 2012 10:22

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

Andmik » 29 фев 2012 00:11

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 01 мар 2012 11:21

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

hardlock » 01 мар 2012 16:12

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 01 мар 2012 16:20

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

Andmik » 01 мар 2012 23:41

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 02 мар 2012 10:17

Суть то понятна ! я исхожу от обратного имея блок не на 494 ! так как производители закладывают изначально большую мощность БП а мы в свою очередь пытаемся выжать из него практически всё что имеется у него на борту! без особых переделок , намоток трансов и прочих коренных изменений! вот допустим ! имеем БП FPS-500 на борту либо 6105 либо 3258 обвяз и контроль по всем уровням включая и внутреннею 3.3в ! тупо привязываем это всё к дежурке! за исключением регулировки самого выходного каскада шима! также имеем на борту по первичке пару полевиков и это не маловажный + при работе в малых диапазонах по сравнению с обычными составниками транзисторов и даже если имеем один полевик на первичке так как это иной раз работает в таких жутких условиях приближённых для данного полевика! . Да и перематывать трансы не нужно ещё тот гемор когда ферры лопаются и ломаются! и процес изготовления затягивается на неопределённое время вот как то так! друзья !

Добавлено спустя 7 минут 51 секунду:
.Да чуть не забыл ! вот в этом отношении БП Поверманы рулят так как шим там в первичке организован вообще пестня для разработки ! и управление ещё проще чем на 494!

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

Andmik » 02 мар 2012 11:30

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 02 мар 2012 12:13

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

nkbri555 » 05 мар 2012 16:02

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

Andmik » 05 мар 2012 23:35

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

Cry Baby » 06 мар 2012 06:25

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 06 мар 2012 11:17

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

nkbri555 » 06 мар 2012 13:46

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

GRAF » 06 мар 2012 14:06

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

yuran111 » 07 ноя 2012 08:18

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

yuran111 » 18 ноя 2012 22:42

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

georg77 » 14 апр 2013 15:02

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

KoT6331 » 15 фев 2014 20:42

Re: Разновидности Шим контроллеров и обход защиты для блоков с регулировкой

pavasilich » 29 мар 2014 16:33

Читайте так же:
Электрический кабель в зависимости от тока

Придется вам курить даташит на wt 7525, срисовывать схему с самого блока, и искать цепи контроля напряжений и корректировать их, или смотреть как нейтрализовать контроль, если он вам не нужен.
———————————————————————————————————————
Здесь во вложении тоже есть варианты обхода защиты FSP3528 и ссылки на другие материалы по этой микросхеме, нарытыми в интернете. Собственно, вот фото готового БП на этом ШИМ контроллере.
Изображение

Защиты блока питания: OVP/UVP/OPP/SCP/SIP

Когда мы включаем источник в первый раз, напряжение требует времени от 0,01 до 0,09 секунды, чтобы достичь всех выходов, с течением времени это напряжение будет увеличиваться, пока не достигнет правильного значения.

Чтобы предотвратить это, все блоки питания включают сигнал под названием «Power-Good» или «Power-OK», который сообщает нам, что линии +3, +5 и + 12V работают правильно в момент включения указанного источника с нуля и если преобразователь имеет достаточно энергии, чтобы гарантировать непрерывный поток.

Остальные средства защиты, которые мы увидим в будущем, работают более или менее, как следует из названия.

OCP (защита от перегрузки по току)

Как видно из названия, это защита, которая действует при превышении определенных уровней тока в схеме источника. Эта защита работает с помощью интегральной схемы и шунтирующего резистора, контролирующего ток. Эти две схемы приводят к тому, что при обнаружении слишком большого скачка тока блок питания немедленно отключается.

UVP (защита от пониженного напряжения)

Являясь одним из наиболее распространенных средств защиты почти во всех источниках питания, он работает так же, как и предыдущий. Как только схема обнаруживает, что ток слишком низкий, она отключает источник.

OVP (защита от перенапряжения)

В отличие от предыдущего случая, если напряжение в линии превысит допустимые значения, установленные производителем, источник автоматически отключится. Эти значения не допускают более 30% на линии + 12В и до 40% на линии + 5В.

SCP (защита от короткого замыкания)

Это наиболее распространенная защита среди всех источников питания. Как следует из названия: в случае короткого замыкания эта функция отвечает за предотвращение повреждения компонентов самого источника и вашей системы.

OPP (защита от перегрузки по мощности)

В случае, если система слишком велика и требует больше мощности, чем может поддерживать источник, эта защита будет активирована путем выключения оборудования. Этот параметр установлен производителем, у некоторых запас на 50-100 Вт больше итогового.

OTP (защита от перегрева)

Как видно из названия, когда датчик температуры обнаруживает чрезмерно высокий избыток тепла (либо из-за чрезмерной грязи, либо из-за неисправности вентилятора), источник немедленно отключается, чтобы избежать большего зла.

Это основные средства защиты, которые включают в себя наши блоки питания.

Защиты блока питания: OVP/UVP/OPP/SCP/SIP Защиты блока питания: OVP/UVP/OPP/SCP/SIPReviewed by Admin on июня 01, 2021 Rating: 5

Алгоритм поиска неисправности в драйвере LED лампы или Эркюль Пуаро отдыхает

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.

LED лампа выглядит вот так:


Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Читайте так же:
Tp ms3463s pb751 убавить ток подсветки

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:


Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:


Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.


Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Первое предположение

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Читайте так же:
Схема выключения света во всем доме одним выключателем

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?

Второе предположение

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Третье предположение

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим.

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:

Читайте так же:
Tp vst59s p89 уменьшить ток подсветки


Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Сюрпризы схем китайских блоков питания эконом класса.

Обслуживая очередной объект с щитами управления бассейном. На достаточно не бедном объекте, с удивлением обнаружил, что используемый блок питания оперативных цепей построен не на закрытом модульном БП а открытом БП в корпусе. Отчего сборщику того щита пришлось его колхозить стяжками на перекрест к дин рейке. Это какой-то китайский NoName HSM-15-12, который благополучно сдох и обесточил цепи управления. Кстати, из цепей управления питал он только одно промежуточное реле 1Вт мощности, потому причина его гибели при такой низкой нагрузки для меня неясна.
Заменять на подобный нет желания, потому предложил поставить там, проверенный временем модульный MeanWell HDR-15-12 на 15Вт/12В, с таким БП проблем быть не должно.
При том, что этот блок питания дешёвый внешне он выполнен аккуратно, штамповка и сборка сделана на высоком технологическом уровне. На алюминиевых деталях, заусенцев нет, присутсвуют различные пазы, для фиксации платы, и перфорированной крышки. При сборки ничего не перекошено, и не играет в руках, внешне алюминий матовый, врннутри полированн.
В целом в руках держать приятно.

Не в последнюю очередь, по этой причине я, решил по-быстрому его отремонтировать, тем более список поломок таких БП банален:
— Электролиты, как первичных так и вторичных цепей питания.
— Силовой ключ первичной цепи + ШИМ, либо просто интегрированный ШИМ с обвязкой.
— В редких случаях первичка трансформатора.
— Оптрон ОС, и/или микросхема TL431.

Когда открыл этот БП, то выяснялось, что он построен, на автогенераторной схеме без микросхем ШИМ.
Электролиты первичной и вторичной цепи вздуты, предохранитель цел, входной диодный мост и ключ первичной цепи целы, при подключении ни каких признаков жизни не демонстрирует.

Читайте так же:
Сенсорный выключатель света для шкафа

Имея определенный опыт ремонта таких изделий обольщаться простой ремонта не стал. Заменил вздутые конденсаторы проверил силовой ключ первичной цепи, мост и предохранитель — целы. Включил через балласт, чтобы избежать взрывов, если что. БП признаков жизни так и не поддал. Решил проверить оптопару, для этого надо выпаять. Но тут выяснилась первая «тупость» а точнее говоря сознательная подлость конструкции – оптопара находится под силовым трансформатором… стало быть надо выпаять и его!

Вот как это выглядело после ремонтных работ о чем будет ниже:

Ну что-ж, «надо, значить надо», аккуратно выпаиваю трансформатор и оптрон.
Подключаю его выводы 1-2 к лабороторнику, задав ограничение по напряжению в 1.2В а току в 20мА. На выводах оптрона 3-4 мерим сопротивление, и получаем – 1.2кОм (обычно порядка 40-65 Ом) значит сдохла и оптопара.

Тут я допустил оплошность, будучи уверенным в том, что все позади, запаял трансформатор на место и включил БП на прямую. Слава Богу, ничего не произошло, но БП так и не подал признаков жизни.

Пришлось делать того чего, не хотелось в рамках данного проекта — срисовывать схему по образцу платы. Так как, входные цепи были уже проверены решил сэкономить время и вычерчивать только ту часть схемы где много всякой обвязки и не очевидно, как она устроена. Где-то потихоньку начал высокую сторону реставрировать…


Но походу работы решил сделать ход конем. Подключить к выходу БП, параллельно лабораторник, и начать подымать напряжение до номинала, чтобы проверить вторичную цепь. Только начал наращивать напряжение, как лабороторник уперся в ограничение тока 1А.
Проверяю диод вторичной цепи – пробит!
Заменяю безимяный китайский 3IDQ 100E, на аналогичный по корпусу SR560.

Снова поддаю и увеличиваю напряжения.
Все хорошо, загорелся светодиод, в защиту уже не уходим, но замечаю, что при 12В потребляемый ток аж 130мА! Для 15Вт БП, это слишком лихо для холостого хода. Нащупываю плату, в первую очередь баластные резисторы, но они холодны. Тем временем где-то выделяются 1.5Вт тепла. Вдруг неожиданно обжигаю палец об поверхность платы, под… трансформатором, там где, стоит перепаянный оптрон… и парочка резисторов. Но, не оптрон горяч, а резистор возле него. Отключил все.

Выпаял трансформатор для расследования причин.
Начинаю срисовывать всю вторичку, чтобы понять, что там за резисторы стоят ну и в целом как она устроена.

Проверяю микросхему TL431А – пробит по всем направлениям. Это конечно плохо, но еще не причина потерь мощности аж в целые 1.5Вт.
И тут барабанная дробь… номинал сопротивления в цепи оптрона R11 – 100Ом, это при 12вольтах номинала напряжения! И спрятан этот резистор вместе с оптроном прямо под силовой трансформатор!
Мое мнение, что это какое-то сознательное вредительство.
И действительно, если принять падение напряжение на открытом оптроне в 1.2В, и микросхеме TL431A в 2.5В, то мы имеем ток I=(Uin-DUopt-DU431)/R11=(12-1.2-2.5)/100= 0.083А = 83mA (при сгоревшем TL431 этот ток будет выше — 108mA). При максимально допустимом токе оптрона в 50mA, очевидно что проживет, он не долго. Сколько прожил этот БП на том объекте, не знаю. Судя по чистому корпусу его поставили не давно. Поэтому перепаял сгоревший TL431A и заменил R11 со 100 на 680Ом.

Снова запаял трансформатор на место,

включил блок питания в сеть и он заработал.

Нагрузил его лентой – полет нормальный. Все!

Вот такие, вот дела. Китайцы, не просто «экономят» а тупо в цепь ОС закладывают такой резистор из-за которого впоследствии вылетит целый набор компонентов. Чтобы ремонтнику было веселее, проблемные компоненты прячутся под трансформатор.

По просьбе трудящихся добавляю всю принципиальную схему:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector