Mpk-prometey.ru

МПК Прометей
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение удельного сопротивления металлического проводника от температуры

Измерение удельного сопротивления металлического проводника от температуры

Изменение сопротивления в зависимости от температуры

Пусть при температуре 0 градусов, сопротивление проводника равняется R0, а при температуре t сопротивление равно R, тогда относительное изменение сопротивления будет прямо пропорционально изменению температуры t:

  • (R-R0)/R=a*t.

В данной формуле а — коэффициент пропорциональности, который называют еще температурным коэффициентом. Он характеризует зависимость сопротивления, которым обладает вещество, от температуры.

Температурный коэффициент сопротивления

численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.

Для всех металлов температурный коэффициент больше нуля.

При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.

Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.

Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.

Зависимость сопротивления от температуры

Электрическое сопротивление металлов находится в прямой зависимости от температуры. Чем выше температура металлического провода, тем выше скорость теплового движения частиц. Следовательно растёт количество столкновений свободных электронов, и снижение их свободного пробега τ . Снижение свободного пробега уменьшает удельную проводимость и, одновременно, увеличивает удельное электрическое сопротивление материала.

Удельное сопротивление электролитов и угля при нагревании наоборот уменьшается, поскольку кроме уменьшения времени τ повышается концентрация носителей зарядов.

Температурный коэффициент сопротивления

В узких границах изменения температуры 0-100°С относительное приращение сопротивления Δr большинство металлических проводов пропорционально приращению температуры Δt = t1 — t2.

Обозначения через r1 и r2 сопротивления при температурах t1 и t2 можно выразить формулой

где α — Температурный коэффициент сопротивления, численно равен относительному приращению сопротивления при нагревании проводника на 1°С.

Температурный коэффициент сопротивления для чистых металлов приблизительно равен α = 0,004°С -1 , это значит, что их сопротивление увеличится на 4%, при росте температуры на 10°С.

Некоторых сплавы, например, как манганин и константан обладают повышенным удельным сопротивлением и крайне низким температурным коэффициентом сопротивления. Так как обладают неправильной структурой и небольшим временем «свободного» пробега электронов. Данные сплавы нашли широкое применение при изготовлении образцовых катушек сопротивления и резисторов с постоянным (независимым от температуры) сопротивлением.

Материал такие как уголь и электролиты обладают отрицательным коэффициентом сопротивления α ≈ -0,02 на 1°С.

Явление сверхпроводимости

В ряде материалов и сплавов при снижении температуры до очень низких значений порядка единиц или десятка градусов Кельвина (0 К ≈ -273°С) возникает явление сверхпроводимости. Температура при которой наступает это явление, называется критической (Ткр) или «точкой скачка».

Проводник в котором возникает явление сверхпроводимости называют сверхпроводником. В таком проводнике может протекать электрический ток, даже если к его концам не будет приложено напряжения иначе говоря сопротивление проводника будет стремится к нулю. В таких проводниках не выделяется тепло даже при значительной плотности тока, т.е. электроны в нём не встречают препятствий и не сталкиваются при свободном движении.

Зависимость сопротивления проводника от температуры

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

где ρ и ρ, R и R — соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α — температурный коэффициент сопротивления, [α] = град -1 .

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления — α

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

§ 109. Зависимость сопротивления проводника от температуры. Сверхпроводимость

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.
Читайте так же:
Схема подключение электролампочек через выключатель

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

где — удельные сопротивления вещества проводника соответственно при 0°С и t°C; R 0 , R t — сопротивления проводника при 0°С и t°С, — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

где — среднее значение температурного коэффициента сопротивления в интервале .

Для всех металлических проводников > 0 и слабо изменяется с изменением температуры. У чистых металлов = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов 0, например, для 10%-ного раствора поваренной соли = -0,02 К -1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

Формулы зависимости и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.

от чего зависит сопротивление металов? и как оно выражается?

Электри́ческое сопротивле́ние — скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающему по нему.

В международной системе единиц (СИ) единицей сопротивления является ом (Ω, Ом) . В системе СГС единица сопротивления не имеет специального названия. Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно определить как

где R — сопротивление; U — разность электрических потенциалов на концах проводника, измеряется в вольтах; I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой служит сименс.

Высокая электропроводность металлов связана с тем, что в них имеется громадное количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов) . При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, изоляторах, электролитах, неполярных жидкостях, газах и т. д. ) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, L — длина проводника, а S — площадь сечения.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости) . Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Критические точки превращения

На рис.2 показаны кривые охлаждения и нагревания чистого железа. Как видно из этих кривых, в процессе перестройки одной решетки в другую, а также при расплавлении и затвердевании железа происходят температурные остановки, являющиеся результатом выделения дополнительного количества тепла при охлаждении и поглощении дополнительного количества тепла при нагревании. Рис. 2. Кривые охлаждения и нагрева чистого железа. Температурные остановки, при которых происходят перестройки решеток, называются критическими температурами или критическими точками и обозначаются Аrпри охлаждении и Ас при нагревании. В точках Аr2и Ас2,не происходит перестройка атомной решетки, а изменяются магнитные свойства железа. При температуре выше 768° железо теряет способность притягиваться магнитом. При очень малой скорости нагревания и охлаждения критические точки А с3и Аr3не совпадают друг с другом на 12°. При увеличении скорости охлаждения несовпадение критических точек увеличивается, так как температура значительно снижается и железо переохлаждается. Это явление, носит название гистерезис. При нагревании и охлаждении стали происходит также перестройка атомной решетки, но температуры критических точек не постоянны. Они зависят от содержания углерода и легирующих примесей в стали, а также от скорости нагревания и охлаждения. На рис. 3 представлена диаграмма состояния углеродистой стали при медленном охлаждении и нагревании. Рис.3. Диаграмма состояния углеродистых сталей.

Читайте так же:
Сенсорный выключатель для лампы маленькие

Зависимость сопротивления проводника от температуры

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

zavisimost-soprotivleniya-ot-temperatury

где ρ и ρ, R и R — соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α — температурный коэффициент сопротивления, [α] = град -1 .

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

soprotivlenie-provodnika-formula

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

zavisimost-soprotivleniya-ot-temperatury-grafik

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления — α <0.

zavisimost-soprotivleniya-ot-temperatury-ehlektrolit

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

zavisimost-soprotivleniya-ehlektrolit-ot-temperatury-grafik

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Падение напряжения на резисторе: формула расчета

Падение напряжения на резисторе

Компоненты электрической цепи

Резистор — элемент в электрической цепи, служащий для снижения напряжения на выходе. Его название происходит от лат. «resisto» – «сопротивляюсь». Из этой статьи вы узнаете, как с помощью резисторов понижается напряжение, об их характеристиках, а также о том, как произвести расчёт резистора, гасящего ток для понижения напряжения.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питанияНапряжение
NiCd аккумулятор1,2 В
Литий-железо-фосфатный аккумулятор3,3 В
Батарея типа «Крона»9 В
Автомобильный аккумулятор12 В
Аккумулятор для грузовых автомобилей24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

Читайте так же:
Строение выключателей с лампочкой

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Закон Ома для электрической цепи

В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:

закон-ома

Определить напряжение в цепи переменного тока можно по следующей формуле:

в этой формуле Z означает сопротивление (Ом), которое было получено на протяжении всей цепи.

В ряде случаев показатели не могут быть рассчитаны по этим фармулам напрямую.

  1. В случаях нахождения проводников или диэлектриков под воздействием высокого напряжения.
  2. В случаях быстро изменяющихся электромагнитных полей при прохождении токов высокой частоты. В этом случае требуется учитывать также инерцию переносящих заряд частиц.
  3. В условиях возникновении свойств сверхпроводимости, если цепи работают при экстремально низких температурах.
  4. При нагреве проводника протекающим по нему током.
  5. Для светодиодов. Зависимость между током и падением напряжения в этом случае нелинейная.
  6. Для процессов в устройствах на основе полупроводников.

В зависимости от того, как элементы включены в цепь – последовательно или параллельно – общее сопротивление рассчитывают по-разному.

Параллельное и последовательное подключение

Расчёт при последовательном подключении

При последовательном соединении элементы идут друг за другом, и выход предыдущего соединяется с входом последующего. Общее сопротивление в этом случае можно посчитать по формуле:

R1…Rn – сопротивления n-элементов (Ом).

Расчёт при параллельном подключении

При параллельном соединении оба элемента цепи включаются параллельно друг другу. Сопротивление в этом случае получают через дробь, формула для его расчёта выглядит так:

R1 … Rn – сопротивления n-элементов (Ом).

Внимание! При разработке схем устройств обычно используются комбинированные соединения. Для расчёта сопротивления схема упрощается, и общее сопротивление сперва определяется для участков с параллельным соединением, а потом суммируется как для цепи с последовательными соединениями элементов.

Для упрощения и ускорения расчётов можно это сделать онлайн.

Единица измерения сопротивления резистора

В Международной системе единиц (СИ) сопротивление измеряется в омах – единице измерения, названной так в честь физика Георга Ома, который также открыл знаменитый закон для электрической цепи. Международное обозначение выглядит так: Ω. Физический смысл этой единицы заключается в следующем:

Сопротивление проводника равно 1 Ом при силе тока, равной 1 А, и напряжении на концах проводников, равном 1 В.

Оно может быть измерено с помощью прибора, называющегося омметр.

Для справки. В системе СГС сопротивление не имеет определённого названия, но в её расширениях используются статом (1 statΩ; рассчитываетсся как ток 1 статампер разделить на напряжение 1 статвольт) и абом (1 abΩ = 1*10 -9 Ом, наноом; его расчёт – ток 1 абампер разделить на напряжение величиной 1 абвольт). Размерность этой величины в СГСЭ и гауссовой системе равна TL −1 , в СГСМ — LT −1 . Обратная величина – электропроводность, её единица измерения – сименс (См), статсименс или абсименс для разных систем соотвественно.

Существует большое разнообразие резисторов с широкой линейкой стандартных величин сопротивления. Рассмотрим соотношение этих номиналов и различные приставки, использующиеся для их обозначения.

Приставка кило- (килоом):

1 КОм равен 1000 Ом

Приставка мега- (мегаом):

1 МОм соответствует 1000 КОм или 1 000 000 Ом

Часто показатели резисторов наносятся непосредственно на их корпус. Это очень удобно. Рассмотрим обозначение их номиналов более подробно.

Резисторы с маркировкой

Номинал резистора – это то же самое, что его сопротивление. Раньше резисторы были достаточно крупными, поэтому все значения прописывались целиком на их корпусах с использованием обычных букв. Помимо сопротивления на резисторе могли указать ещё и класс точности или мощность рассеивания.

Сопротивление – основная характеристика резистора. О том, что оно из себя представляет и как рассчитывается, было рассказано выше, поэтому сейчас подробнее остановимся на особенностях их обозначений.

Для простановки значения, не привышающего 1КОм после цифры, обозначающей величину сопротивления, ставится R (или величина указывается совсем без буквы). На резисторах, выпускавшихся давно, можно встретить слово Ом. Позже принятая маркировка изменилась, теперь она используется в формате:

целая величина – R – дробный остаток

300 = 300 Ом
200 R = 200 Ом

Современные обозначения выглядят так:

4R02 = 4,02 Ом
2R2 = 2,2 Ом

Если значение меньше 1 ома, то ноль в начале обозначения опускают:

Если сопротивление больше тысячи ом, то применяются специальные приставки (мега-, кило-) для упрощения написания. Очень большие значения этой величины почти не встречаются, поэтому необходимость в префиксах Тера- и Гига- возникает крайне редко. Примеры обозначений:

K200 = 200 Ом
2К0 = 2 КОм = 2000 Ом
M200 = 0,2 МОм = 200 KОм = 100 000 Ом
3М0 = 3 МОм = 3 000 КОм = 3 000 000 Ом

Дополнительно можно рассмотреть следующую характеристику – удельное сопротивление.

Бывает, что возникает необходимость также рассчитать удельное сопротивление. Оно измеряется величиной Ом*м.

Для однородного проводника вычисляемое удельное сопротивление находится так:

l — длина отрезка проводника (м),

S — площадь сечения проводникового элемента (м 2 )

Подробнее о буквенной маркировке резисторов читайте здесь.

Характеристика мощности резистора

Мощность электрического тока на участке цепи можно узнать через произведение силы тока для него и напряжения на данном участке. Формула имеет следующий вид:

P= I * U (произведение силы тока и напряжения), где

P – значение мощности (Вт).

Резистор совершает работу по снижению силы тока, при этом он выделяет тепло в окружающее пространство. Но если работа по ограничению тока очень велика и тепло вырабатывается слишком быстро, то он перегреется и может сгореть, так как не будет успевать его рассеивать. Следует учитывать этот момент, подбирая мощность резистора

Важно! Мощность резистора – это очень важный параметр, который обязательно нужно учитывать при разработке электрических схем устройств Мощность резистора характеризуется максимальной величиной силы тока, которую он может выдерживать без перегрева и не выходя из строя.

Расчет мощности резистора

Определим мощность резистора на примере схемы с включённой нагрузкой. Например, мы имеем ток, равный 0,4А, а падение напряжения на резисторе составляет 5В. Значит, расчёт будет выглядеть следующим образом:

Читайте так же:
Схема подключения лампочки через выключатель 220

Следовательно, здесь потребуется резистор, мощность которого не ниже двух ватт. Лучше, если эта характеристика будет чуть выше, чтобы резистор не перегревался и не вышел из строя.

Как понизить напряжение с помощью резистора

Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:

Делитель напряжения

В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:

Uвх – напряжение на входе, В;

Uвых – напряжение на выходе, В

R1 – показатель сопр. 1-ого резистора (Ом)

R2 – показатель сопр. 2-ого элемента, (Ом)

Подбор резистора для понижения напряжения

Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.

EveryCircuit

Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:

  • EasyEDA;
  • Circuit Sims;
  • DcAcLab;

В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.

Какая лампа светится ярче при последовательном и параллельном подключении и почему

Какая лампа светится ярче при последовательном и параллельном подключении и почему

Две лампы мощностью 80 Вт и 100 Вт подключены последовательно и параллельно — какая из них будет светиться ярче?

Самый запутанный вопрос, который мы получили: если две лампочки подключены последовательно, а затем параллельно, какая из них будет светиться ярче и каковы точные причины? Что ж, в Интернете много информации, но мы рассмотрим подробности шаг за шагом, чтобы вычислить точные значения, чтобы устранить путаницу.

Прежде всего, имейте в виду, что лампа, имеющая высокое сопротивление и рассеивающая большую мощность в цепи (независимо от того, последовательно или параллельно), будет светиться ярче . Другими словами, яркость лампы зависит от напряжения, тока (V x I = мощность), а также сопротивления .

Также имейте в виду, что рассеиваемая мощность в ваттах не является единицей измерения яркости. Единица яркости — люмен ( обозначается lm, производная единица светового потока в системе СИ ), также известная как кандела (базовая единица силы света). Но яркость света прямо пропорциональна мощности лампы . Вот почему чем больше потребляемая мощность ватт, тем ярче будет светиться лампа .
Когда лампы соединены последовательно
Номиналы лампочек в ваттах разные и подключаются последовательно:

Предположим, у нас есть две лампы по 80 Вт (лампа 1) и 100 Вт (лампа 2), номинальное напряжение обеих ламп составляет 220 В и соединено последовательно с напряжением питания 220 В переменного тока. В этом случае лампа с большим сопротивлением и большей рассеиваемой мощностью будет светиться ярче, чем другая. т.е. лампа мощностью 80 Вт (1) будет светиться ярче, а лампа (2) мощностью 100 Вт будет тускнеть при последовательном подключении . Короче говоря, последовательно через обе лампы протекает одинаковый ток. Лампа с более высоким сопротивлением будет иметь большее падение напряжения на ней и, следовательно, будет иметь более высокую рассеиваемую мощность и яркость. Как? Давайте посмотрим на расчеты и примеры ниже.
Мощность

P = V x I или P = I 2 R или P = V 2 / R

Теперь сопротивление лампы 1 (80 Вт)
Мы знаем, что ток такой же, а напряжение складывается в последовательной цепи, но номинальное напряжение ламп составляет 220 В. т.е.

Напряжение в последовательной цепи: V T = V 1 + V 2 + V 3 … + V n

Ток в последовательной цепи: I T = I 1 = I 2 = I 3 … I n

R 80W = 220 2 / 80W

R 80 Вт = 605 Ом

И сопротивление лампы 2 (100 Вт);

R 100W = 220 2 / 100W
R 100 Вт = 484 Ом

= В / ( 80 Вт + 100 Вт )

= 220 В / (605 Ом + 484 Ом)

Мощность, рассеиваемая лампочкой 1 (80 Вт)

P 80 Вт = (0,202 А) 2 x 605 Ом
Р 80W = 24,68 Вт

Мощность, рассеиваемая лампой 2 (100 Вт)

P 100 Вт = (0,202 А) 2 x 484 Ом

P 100 Вт = 19,74 Вт

Связанный пост: Почему передача электроэнергии кратна 11, т.е. 11 кВ, 22 кВ, 66 кВ и т. Д.?
Следовательно, доказанная рассеиваемая мощность P 80 Вт > P 100 Вт, т.е. лампа 1 (80 Вт) рассеивает больше мощности, чем лампа 2 (100 Вт) . Следовательно, лампа мощностью 80 Вт ярче лампы мощностью 100 Вт при последовательном подключении .

Читайте так же:
Схема подключения трех лампочек через выключатель

Вы также можете найти падение напряжения на каждой лампочке, а затем найти рассеиваемую мощность P = V x I, как показано ниже, чтобы проверить случай.

V = I x R или I = V / R или R = V / I … ( Основной закон Ома )

Для лампы 1 (80 Вт)

V 80 = I x R 80 = 0,202 x 605 Ом = 122,3 В
V 80 = 122,3 В

Для лампы 2 (100 Вт)

V 100 = I x R 100 = 0,202 x 484 Ом = 97,7 В

Связанный пост: Для чего нужны цветные шарики-маркеры на линиях электропередач?
Сейчас,

Мощность, рассеиваемая лампочкой 1 (80 Вт)

P = V 2 80 / R 80

P 80W = 122,3 2 В / 605 Ом

P 80 Вт = 24,7 Вт

Мощность, рассеиваемая лампой 2 (100 Вт)

P = V 2 100 / R 100

P 100 Вт = 97,72 2 В / 484 Ом

P 100 Вт = 19,74 Вт

Общее напряжение в последовательной цепи

V T = V 80 + V 100 = 122,3 + 97,7 = 220 В

Снова доказано, что лампа мощностью 80 Вт больше по рассеиваемой мощности, чем лампа мощностью 100 Вт при последовательном подключении . Следовательно, лампа мощностью 80 Вт будет светиться ярче, чем лампа мощностью 100 Вт при последовательном подключении.

Когда лампы подключены параллельно
Номиналы лампочек в мощности разные и включаются по параллельной цепи:

Теперь у нас есть две одинаковые лампы мощностью 80 Вт (лампа 1) и 100 Вт (лампа 2), подключенные параллельно к источнику питания 220 В переменного тока. В этом случае произойдет то же самое, т. Е. Лампа с большим током и большим рассеиванием мощности будет светиться ярче, чем другая. На этот раз лампа 100 Вт (2) будет светиться ярче, а лампа 1 мощностью 80 Вт станет тусклее . Короче говоря, параллельно обе лампочки имеют одинаковое напряжение на них. Лампа с меньшим сопротивлением будет проводить больше тока и, следовательно, будет иметь более высокую рассеиваемую мощность и яркость. Смущенный? поскольку дело было обратным. Давайте посмотрим на приведенные ниже расчеты и примеры, чтобы устранить путаницу.

P = V x I или P = I 2 R или P = V 2 / R
Теперь сопротивление лампы 1 (80 Вт) ;

Связанное сообщение: Что такое крошечный цилиндр в шнурах питания и кабелях?
Мы знаем, что напряжения в параллельной цепи одинаковы, а номинальное напряжение лампочек составляет 220 В. т.е.

Напряжение в параллельной цепи: V T = V 1 = V 2 = V3… V n

Ток в параллельной цепи: I T = I 1 + I 2 + I 3 … I n

R 80W = 220 2 / 80W

R 80 Вт = 605 Ом

И сопротивление лампы 2 (100 Вт);

R = V 2 / P
R 100W = 220 2 / 100W

R 100 Вт = 484 Ом

Мощность, рассеиваемая лампой 1 (80 Вт), поскольку напряжения в параллельной цепи одинаковы.

Р 80W = (220) 2 / 605Ω

Мощность, рассеиваемая лампой 2 (100 Вт)

P 100W = (220) 2 / 484Ω
P 100 Вт = 100 Вт

Следовательно, доказано, что P 100 Вт > P 80 Вт, т.е. лампа 2 (100 Вт) рассеивает больше мощности, чем лампа 1 (80 Вт) . Следовательно, лампа мощностью 100 Вт ярче лампы мощностью 80 Вт при параллельном подключении.

Чтобы проверить приведенный выше случай, вы также можете найти ток для каждой лампы, а затем найти рассеиваемую мощность на P = V x I следующим образом. Мы использовали номинальное напряжение лампы 220В.

Для лампы 1 (80 Вт)

Я 80 = Р 80 /220 = 80W / 220 = 0.364A

Для лампы 2 (100 Вт)

Я 100 = P 100 /220 = 100 Вт / 220 = 0.455A

I 100 = 0,455 А
Сейчас,

Мощность, рассеиваемая лампой 1 (80 Вт), поскольку напряжения в параллельной цепи одинаковы.

P 80 Вт = 0,364 2 А x 605 Ом

Мощность, рассеиваемая лампой 2 (100 Вт)

P 100 Вт = 0,455 2 А x 484 Ом

P 100 Вт = 100 Вт

Полный ток в параллельной цепи
Вновь доказано, что лампа мощностью 100 Вт рассеивает больше мощности, чем лампа мощностью 80 Вт при параллельном подключении . Следовательно, лампа мощностью 100 Вт будет светиться ярче, чем лампа мощностью 80 Вт при параллельном подключении.
Без расчетов и примеров
Расчеты и примеры для новичков. Чтобы упростить задачу, имейте в виду, что лампочка с «большой мощностью» всегда будет иметь «меньшее сопротивление» . Нить лампы с высоким номиналом толще, чем у лампы с меньшей мощностью . В нашем случае нить лампы мощностью 80 Вт тоньше, чем лампа мощностью 100 Вт.

Другими словами, лампа мощностью 100 Вт имеет меньшее сопротивление, а лампа мощностью 80 Вт имеет высокое сопротивление .

Когда лампы соединены последовательно
Мы знаем, что ток в последовательной цепи одинаков в каждой точке, это означает, что обе лампы получают одинаковый ток и разные напряжения. Совершенно очевидно, что падение напряжения на лампе с более высоким сопротивлением (80 Вт) будет больше. Таким образом, лампа мощностью 80 Вт будет светиться ярче по сравнению с лампой мощностью 100 Вт, подключенной последовательно, потому что через обе лампы протекает один и тот же ток, а лампа мощностью 80 Вт имеет большее сопротивление из-за более низкой мощности, поскольку тонкая нить накала означает, что она рассеивает больше мощности ( P = V 2 / R, где мощность прямо пропорциональна напряжению и обратно пропорциональна сопротивлению ) и производят больше тепла и света, чем лампа мощностью 100 Вт.

Когда лампы подключены параллельно
Мы также знаем, что напряжение в параллельной цепи одинаково в каждой секции, что означает, что обе лампы имеют одинаковое падение напряжения. Теперь больше тока будет течь по лампе с меньшим сопротивлением, которая на этот раз составляет 100 Вт, что означает, что лампа мощностью 100 Вт рассеивает больше мощности, чем лампа мощностью 80 Вт ( P = I 2 R ), где ток и сопротивление прямо пропорциональны мощности. Следовательно, лампочка мощностью 100 Вт будет светиться ярче в параллельной цепи .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector