Mpk-prometey.ru

МПК Прометей
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подарки и советы

Питание светодиода от lm317. Простой драйвер постоянного тока на LM317 и PT4115 для подключения мощных светодиодов

Чтобы правильно подключить светодиоды и обеспечить им долгую и продуктивную работу требуется источник стабильного тока или, как его называют, драйвер для светодиодов . Как выбрать готовый или собрать самому простой драйвер для подключения светодиодов – в этой статье.

Основной параметр при подключении светодиодов – это не напряжение, а именно величина тока , протекающего через него. Известно не мало случаев, когда после включения светодиодов, особенно “китайских”, ток через них медленно продолжает увеличиваться (по мере нагрева) и через некоторое время может достигать значений, серьезно превышающих номинальные. Все это приводит к перегреву кристалла, скорой деградации, морганию в предсмертной конвульсии и неминуемого выхода из строя.

Для обеспечения одинакового тока, светодиоды к стабилизатору тока подключаются последовательными группами.

Линейный драйвер на LM317

Описание и Характеристики

По-сути, LM317 представляет собой стабилизатор напряжения , который можно включить и как стабилизатор тока . Схема драйвера на этой микросхеме проста, как угол дома: вам потребуется сама микросхема и. один опорный резистор – и все! Все детали можно спаять навесным монтажом, прикрутив микросхему прямо к радиатору. Благодаря простоте и доступности при стоимости микросхемы около 0,2 у.е. , эта микросхема многие годы пользуется огромной популярностью среди радиолюбителей. Один из аналогов микросхемы – популярная отечественная «КРЕН-ка» КР142ЕН12.

В зависимости от исполнения LM317 может иметь добавочный индекс, характеризующий корпус микросхемы. Наиболее распространенный варинат – LM317T в корпусе TO-220 под винт для крепления непосредственно к радиатору охлаждения. LM317D2T в корпусе D 2 PAK рассчитана для монтажа на плате при небольшой мощности нагрузки.

Микросхема линейного стабилизатора LM317 / LM317T

Принцип регулирования напряжения/тока линейного стабилизатора состоит в том, что стабилизатор изменяет сопротивление p-n перехода выходного мощного транзистора (по сути, последовательного резистора в цепи) и тем самым адаптивно отсекает “лишнее” напряжение или гасит на себе “лишний” ток. Благодаря этому к питающему напряжению не домешиваются какие-либо высокочастотные помехи, поскольку их нет в принципе. Однако, у линейных стабилизаторов есть и серьезный недостаток. Как известно, при прохождении тока через любой резистор, на нем рассеивается мощность в виде тепла. Поэтому у линейного стабилизатора на LM317 склонность к сильному нагреву и, как следствие, достаточно низкий КПД .

Схемы и примеры включения

Схемы и примеры включения стабилизатора тока на LM317

Схема подключения LM317 для стабилизатора тока предельна проста – просто подключить опорный резистор заданного номинала между ножками выхода и регуляторным входом. Значения сопротивления и мощности опорного резистора можно расчитать по упрощеной формуле:

R = 1,25 / I out P = 1,25 ⋅ I out

Полученные значения округляем до ближайшего значения номиналов сопротивления и до ближайшего бо́льшего значения мощности, например для подключения полуваттных SMD 5730 получаем резистор на 8,2 Ом, мощностью 0,25 Вт, а для светодиодов на 1 Вт (300 мА), соответственно – 4,3 Ом и 0,5 Вт. Может оказаться, что резисторов требуемого номинала нет в наличии, тогда можно скомбинировать составной резистор из нескольких одинаковых, соединив из параллельно. В таком случае суммарное сопротивление такого составного резистора будет равно сопротивлению каждого резистора поделенного на их кол-во, а мощность будет равно мощности каждого резистора помноженного на их кол-во. Для простоты расчетов в Сети есть достаточно много он-лайн калькуляторов, например, такой .

Для работы стабилизатора тока на LM317 происходит падение напряжения не менее 3 В – это надо учитывать при подборе входного напряжения и количества последовательно соединенных светодиодов. Например, рабочее напряжение для SMD 5730 – 3,3…3,4 В. Следовательно, если подключать по 3 светодиода в группе, то входное напряжение должно быть от 13 В (рабочее напряжение исправной бортовой сети автомобиля – 14 В).

При всей свое простоте линейный стабилизатор тока на LM317 отличается низким КПД и потребностью в дополнительным охлаждением.

Импульсный драйвер на PT4115

Описание и Характеристики

Стабилизатор тока на базе PT4115 относится к “ключевым” или импульсным устройствам, т.е. регулировка величины тока через подключенную нагрузку осуществляется не за счет ограничения тока на полупроводниках, как это делается в линейных стабилизаторах LM317, а благодаря высокочастотному открытию/закрытию выходного ключа.

В импульносном стабилизаторе PT4115 постоянный ток преобразуется в импульсный с высокой частотой, а затем снова сглаживается до постоянного. Вот как раз, в момент формирования импульсов, и происходит регулировка величины тока за счет уменьшения или увеличения длительности самого импульса или пауз между ними (скважности). Поскольку импульсный регулятор ничего не ограничивает, а просто замыкает/размыкает цепь, то падения мощности не происходит, а значит импульсный регулятор мало греется и имеет высокий КПД (до 97%!). Поэтому, импульсный драйвер может иметь очень маленькие размеры и не требует громоздкого охлаждения.

Читайте так же:
Настройка датчика движения выключателя света

Для работы стабилизатора тока на PT4115 требуется минимум деталей. Кроме того, PT4115 может работать как диммер : для этого подается на специальный вход постоянное напряжение в диапазоне 0,3…2,5 В или сигнал ШИМ.

Схемы и примеры включения

Схемы и примеры включения стабилизатора тока на PT4115

Схема источника стабильного тока с использованием PT4115 стандартна и использует минимум обвязки. Кроме самой микросхемы потребуется сглаживающий конденсатор, задающий низкоомный резистор (скорее всего составной), диод Шоттки да катушка индуктивности (дроссель). При подключении к источнику переменного напряжения потребуется еще диодный мост. Все детали достаточно миниатюрны и позволяю собрать плату размером с пять копеек.

Параметры опорного резистора рассчитываем по упрощенной формуле:

R = 0,1 / I out

Для одноваттных светодиодов (300мА) получаем резистор на 0,33 Ом. Для получения такого резистора можно “бутербродом” спаять параллельно 3 SMD резистора на 1 Ом.

Идуктивность дросселя определяется в зависимочсти от тока нагрузки по таблице:

Всех Вам благ, и ровных дорог =)

Зачастую нуждается в дополнительном, так сказать, обеспечении, например, для мощных светодиодов необходим драйвер. Его можно собрать самому.

Хочу представить сегодня на вас суд простейший драйвер для 0.5-5Вт-х светодиодов на базе микросхемы LM317.

Как известно, для питания мощных светодиодов нужен стабилизатор тока (или, как говорят, светодиод питается током, а не напряжением), иначе светодиод прослужит не очень долго и сгорит. Для этих целей служит LED-драйвер, предназначенный для стабилизации тока и других функций (регулировка яркости и т.п.). Существуют специализированные микросхемы, да и в интернете полно схем драйверов.

Однако можно собрать простейший LED драйвер на популярной микросхеме LM317.

Эта микросхема универсальна, на ней можно строить как всевозможные линейные стабилизаторы напряжений, так и ограничители тока, зарядные устройства… Но остановимся на ограничителе тока. Микросхема ограничивает ток, а напряжение диод берет столько, сколько ему нужно. Схема очень проста, состоит всего из двух деталей: самой микросхемы и задающего ток резистора.


Или вот такой более понятный рисунок.

Минимальное напряжение должно быть минимум на 2-4В больше чем напряжение питания кристалла светодиода. Схема позволяет ограничивать ток от 10мА до 1,5А с максимальным входным напряжением 35В. При большом перепаде напряжений и(или) больших токах микросхему нужно посадить на радиатор. Если же требуются большие входные напряжения или ток, или нужно уменьшить потери, или тепловыделение то уже стоит использовать импульсный драйвер.

Резистор рассчитывается по следующей формуле:
R1=1.25В/Iout, где ток взят в Амперах, а сопротивление в Омах.
Например, имеем светодиод на ток 700 мА, R=1.25/0.7A=1.785 или 1.8 Ом.


Небольшая рассчитанная таблица.

Учтите, что максимальный ток для LM317 составляет полтора Ампера. Также не забывайте использовать радиатор для нее.
Конечно сама схема имеет низкий КПД, но на это можно не обращать внимание.

От себя добавлю, что имея в руках БП (блок питания) от компьютера допустим и пару-тройку таких микросхем да резисторов, можно собрать неплохое светило на тех же Cree или Semileds. На одну микросхему можно подцепить до 10 диодов.

На данный момент собран мною по такой схеме драйвер для фонаря на трех Cree XM-L t6 в котором источником питания служит четыре аккумулятора US18650GR (3,7v). Ток на диодах 1250мА. Это конечно меньше родного драйвера (там аж 3А было), но все равно отлично светит.
Также замечу, что у БП от ПК есть две линии +12 и -12, то есть можно взять 24в. А это уже при сопротивлении 1,8 Ом можно подключить 6 шт. диодов на одну линию. То есть нужно 4 микросхемы. Но есть одно но: на линии -12в ток всего 0,3А, то есть не пойдет (это я только что глянул на один из своих БП).

Как самостоятельно сделать простой стабилизатор тока для светодиодов своими руками?

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Читайте так же:
Розетка этюд дача светлое дерево

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Читайте так же:
Световой выключатель наружного освещения

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

Прибор на КРЕНке 1. Прибор на КРЕНке На двух транзисторах 2. На двух транзисторах С операционным усилителем 3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Калькуляторы

Все они написаны для упрощения тех или иных расчетов, поэтому я объединил их в одну группу. Ниже приведено подробное описание каждой программы.

LED Calc

LED Calc — это удобная программа для расчета резистора для светодиодов. В программе необходимо указать напряжение источника питания, напряжение и ток светодиода, а также указать тип соединения (параллельное / последовательное) и количество светодиодов. После нажатия на кнопку Рассчитать программа выведет точное значение сопротивления резистора, стандартное значение (из ряда E24), а также мощность резистора и общую мощность потребляемую схемой. Ниже представлен интерфейс программы. Следует помнить, что данный способ подключения подходит для маломощных (10-50 мА) светодиодов. В более мощных случаях становится заметным низкий КПД и ухудшаются стабилизационные возможности.

MC34063 Calc

MC34063 Calc — это удобная программа для расчета преобразователей напряжения на микросхеме MC34063. MC34063 – универсальная микросхема для самых простых импульсных преобразователей. Как известно, по сравнению с традиционными линейными, импульсные преобразователи являются более эффективными. На MC34063 можно построить понижающие, повышающие и инвертирующие преобразователи без применения внешних переключающих транзисторов.

Основные технические характеристики MC34063:

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Подробную информацию по микросхеме можно получить из документации

Программа позволяет рассчитывать все три топологии преобразователей. Тип преобразователя определяется автоматически из введенных параметров (Vin > Vout — понижающий, Vin LM317 Calc — это удобная программа для расчета стабилизатора напряжения с использованием микросхемы LM317. В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасным и простым решением будет использование популярного интегрального стабилизатора LM317T (корпус TO-220).

Основные технические характеристики LM317:

  • Широкий диапазон значений выходных напряжений от 1,2 до 37 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Максимальная рассеиваемая мощность 20 Вт;
  • Встроенная защита от короткого замыкания;
  • Встроенная защита от перегрева.

Подробную информацию по микросхеме можно получить из документации

Программа позволяет производить расчет выходного напряжения по известным значениям сопротивлений R1 и R2, а также расчет R1 (или R2) по известным значениям Vout и R2 (или R1). Для удобства в окне программы приводится схема стабилизатора. Программа выводит точное значение сопротивлений резисторов, а также стандартное значение (из ряда E24). При работе с программой необходимо учитывать, что окно ввода рассчитываемого значения, будет недоступно для ввода (поскольку это значение и будет рассчитано). Интерфейс программы представлен ниже.

Buck Calc

Buck Calc — это удобная программа понижающего преобразователя напряжения (buck-конвертор). Расчеты производятся согласно статье «Buck-Converter Design Demystified». Также в программу добавлена возможность расчета числа витков и индукции насыщения для катушки индуктивности с торроидальным сердечником (вводится желаемое значение индуктивности).

Подключение светодиодов: практика

Итак, товарищи, сегодня я хочу представить продолжение предыдущей статьи про светодиоды. Надеюсь, в прошлый раз я уже убедил всех сомневающихся в том, что светодиоду нужен именно стабильный ток, а потому настало время перейти к конкретным схемам его получения — от простого и убогого к сложному и качественному.

Начнем по порядку.

1. Классика — резистор.

Подходит для маломощных (10 — 50мА) светодиодов. В более мощных случаях становится заметным низкий КПД и не особо хорошие стабилизационные возможности.

Читайте так же:
Розетка кабельная с крышкой ip44

Повторю методику расчета:

Пусть среднее падение на применяемом диоде Ufw, напряжение питания U, и необходим ток диода Ifw. Тогда очевидно, что резистор должен принять на себя излишек напряжения, т.е., на нем должно падать U-Ufw вольт при рабочем токе Ifw. Откуда несложно посчитать его номинал:

Ясно, что в случае нескольких диодов Ufw заменяется на суммарное падение на цепочке.

Механизм стабилизации «на пальцах» описан в предыдущей статье. Однако, его можно объяснить и по-другому: в теории источник тока обладает бесконечным внутренним сопротивлением. Мы же здесь имеем источник напряжения, включенный последовательно с резистором. Т.е., с точки зрения диода, резистор наращивает внутреннее сопротивление источника, превращая его из источника напряжения в источник тока. Очевидно, что, чем больше резистор, тем больше такая схема похожа на идеальный источник тока и тем лучше ее параметры. Потому, еще раз, такая схема подходит только для маломощных диодов.

Перейдем к более качественным регуляторам. Но для начала я хотел бы пояснить общий принцип их действия, а для этого рассмотреть источник тока еще с одной стороны. Только что я что-то говорил про бесконечное внутреннее сопротивление — все это в согласии с теорией, никаких сомнений. Однако давайте взглянем по-другому на то, что делает источник тока: по сути, он всегда устанавливает на нагрузке такое напряжение, при котором через нее протекает заданный ток. Т.е., это источник напряжения с обратной связью по току. Таким образом, драйвер для светодиода можно сделать почти из любого стабилизатора напряжения, изменив тип его обратной связи.

2. Линейные регуляторы.

По идее, здесь должна бы быть классическая схема на LM317. Однако я хотел бы отойти от традиций и объяснить принцип работы подобного рода схем на отвлеченном примере, а заодно и проиллюстрировать все вышесказанное про обратную связь и источники тока. Кроме того, как станет очевидно, эти же принципы действуют и для импульсных схем.

Для начала разберемся с тем, как работает стандартный трехвыводной регулятор. Как подсказывает нам Капитан Очевидность, у трехвыводного регулятора имеется три вывода: вход, выход, и управляющий вход. Внутри имеется источник опорного напряжения. В процессе работы внутренняя схема сравнивает напряжение на управляющем входе с опорным, и, если опорное больше, регулятор начинает увеличивать напряжение на нагрузке. Если опорное меньше — уменьшать. При этом сам регулятор даже и не догадывается, что он стабилизатор тока или напряжения — его схема всего лишь реализует описанный алгоритм. Очевидно, что для получения желаемого эффекта стбилизации надо связать изменение напряжения на выходе и напряжения на управляющем входе с помощью какой-либо цепи. Например, если мы хотим получить постоянное напряжение, необходимо сконструировать цепь, которая будет подавать на управляющий вход напряжение больше опорного, когда выходное напряжение больше необходимого, и меньше опорного в противном случае. Очевидно, что такой цепью является обычный резистивный делитель. Собственно, классический стабилизатор напряжения на LM317:

Обычное напряжение опорного источника в LM317 — 1.25В.

Однако мы хотели стабилизировать ток. Т.е., нам нужна схема, которая будет подавать на управляющий вход напряжение меньше опорного, если выходной ток меньше заданного, и больше — если больше. Т.е., необходимо превратить изменение тока в изменение напряжения. Ясно, что здесь нам опять поможет резистор:

А теперь давайте сделаем то, что я так люблю делать — посмотрим на эту схему под другим углом. Вглядитесь, ведь здесь мы, по сути, заставляем регулятор стабилизировать напряжение на резисторе на уровне опорного (1.25В для LM317). А, поскольку резистор — линейный элемент, то при стабильном напряжении ток через него будет постоянен. Светодиод же включен последовательно со всей этой конструкцией, и потому его ток тоже будет постоянен, хотя регулятор про него ничего не знает — он просто стабилизирует напряжение на резисторе.

Из вышесказанного очевидно, что резистор можно расчитать, исходя из опорного напряжения и заданного тока:

Достоинство такого регулятора — высокая стабильность тока и простота схемы. Недостаток — низкий КПД. Кроме того, есть и чисто практическое неудобство: как нетрудно убедиться, для значительных токов (>

0.2А) расчетные номиналы сопротивлений получаются порядка десятков Ом, что создает трудности в их добыче — чаще всего приходится изготавливать оные самостоятельно, либо наматывая из, например, нихрома, либо по-разному соединяя стандартные резисторы.

Читайте так же:
Нужны ли светодиодам розетки

3. Импульсные регуляторы.

Линейные регуляторы изменяют параметры питания нагрузки, сбрасывая излишки энергии источника на регулирующем элементе (чаще всего это транзистор). Однако существует и другой подход: сначала мы берем порцию энергии от источника, например, запасая ее в дросселе в виде магнитного поля (или в конденсаторе в виде электрического), а потом отдаем ее в нагрузку. При этом нет необходимости сбрасывать излишки, поскольку мы сразу берем энергии ровно столько, сколько ее требуется.

В соответствующей статье Википедии есть хорошая картинка:

Это один из вариантов построения импульсного преобразователя (понижающий преобразователь). Пока ключ замкнут, ток от источника протекает через катушку, и в это время в ней запасается энергия. При разомкнутом ключе индуктивность отдает накопленную энергию в нагрузку.

При всех концептуальных различиях в способе управления питанием нагрузки, алгоритм работы импульсных преобразователей не отличается от алгоритма работы линейных. Т.е., они также сравнивают напряжение на регулируюшем входе с внутренней опорой. А потому все сказанное про обратную связь в равной степени относится и к ним.

Пример. Превращаем MC34063 — импульсный стабилизатор напряжения, в драйвер светодиодов:

Вывод 5 MC34063 — тот самый управляющий вход, напряжение на котором внутри сравнивается с опорным. В принципе, его можно прямо подключить туда же, куда включен неинвертирующий вход ОУ. Очевидно, при этом надо будет пересчитать резистор обратной связи по току R1 так, чтобы напряжение на нем при заданном токе было равно опорному — те же 1.25В. Однако при этих условиях мощность, рассеиваемая на нем, будет около полуватта (при токе 350мА, для которого расчитывалась эта схема), что много. Потому для повышения КПД я поставил резистор меньшего номинала, напряжение с которого усиливается с помощью ОУ. Кстати, как нетрудно видеть, такая схема имеет еще один бонус — возможность менять ток, изменяя коэффициент усиления. Кроме того, по этой же причине для нее не важен точный номинал токоизмерительного резистора.

А вообще уже давно выпускается множество специализированных светодиодных драйверов. На самом деле, основное отличие т.н. «драйвера» от простого импульсного стабилизатора состоит в том, что тот операционный усилитель, который мне пришлось поставить отдельно для MC34063, в них уже присутствует, что и дает возможность сразу ставить резисторы малого сопротивления.

В документации на драйверы дается исчерпывающая информация относительно их применения, потому я лишь для порядка приведу пример схемы включения одного из них — ZXLD1362 (просто цитата из даташита):

Кроме того, существует класс схем на основе блокинг-генератора, применяемых для питания маломощных светодиодов от батареек в тех случаях, когда приоритетом является низкая цена — таким схемам будет посвящена моя следующая статья. Однако, стоит отметить, что для той же цели также есть интегральные драйверы.

Собственно, все. Надеюсь, этот материал поможет кому-то разобраться в вопросах питания светодиодов.

    , , , ,
  • +7
  • 07 июня 2011, 13:45

Комментарии ( 22 )

Продолжаешь насаждать ту же ошибку. Важно не абсолютное значение резистора, а соотношение его и нагрузки. Поэтому мощный диод через резистор работает так же, но потери на резисторе становятся неприемлемы (т.к. маломощные — как правило на вспомогательной роли и большого вклада в общее энергопотребление прибора не вносят, а мощные — в осветительных устройствах и по сути являются единственным полезным потребителем энергии). Кроме того, стабильность тока через резистор так себе, а мощные диоды более чувствительны к отклонениям и работают обычно на пределе (тогда как индикаторные — на 10-50% предела, лишь бы светились заметно на пульте) — т.к. дороги, а света надо много.

У специализированных драйверов есть еще одно отличие. Они знают, на что нагружены. Это позволяет несколько упростить схему. Так, например, HV9961 стабилизирует средний ток диодов, хотя резистор включен в первичной цепи, где ток совершенно другой и зависит не только от выходного, но и от разницы входного и выходного напряжения. И тем не менее, оно работает — т.к. HV9961 несколько иначе обрабатывает получаемую с резистора информацию о токе.

Алсо, по импульсникам — стоило бы сделать ссылки на статьи Di Halt’а, где он на пальцах и канализации объясняет, как работают step-up и step-down конвертеры.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector