Mpk-prometey.ru

МПК Прометей
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет электрических нагрузок квартир и коттеджей. Расчет токов короткого замыкания

Расчет электрических нагрузок квартир и коттеджей. Расчет токов короткого замыкания

На начальной стадии проектирования, когда практически неизвестны точные данные электроприемников, но необходимо получить технические условия на присоединение электрической мощности, возникает вопрос, как рассчитать величину установленной мощности потребителей и на этой основе определить расчетную нагрузку на вводе в квартиру или коттедж. При этом, под понятием расчетная электрическая нагрузка Рр потребителя или элемента сети подразумевается мощность, равная ожидаемой максимальной нагрузке за 30 мин.

В Нормативах по определению расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети (изменения и дополнения к Инструкции по проектированию городских электрических сетей — РД 34.20.185-94) приведены удельные расчетные нагрузки.

Указанные Нормативы составлены на основании анализа режимов электропотребления перспективного набора электробытовых приборов и машин в квартире (коттедже). Учитывались данные по установленной мощности приборов и машин, определялся суточный расход электроэнергии, возможное время работы каждого прибора и машины.

В удельных расчетных нагрузках за основу принято, что расчетная нагрузка отдельной квартиры (коттеджа) или небольшого числа квартир (коттеджей) определяется приборами эпизодического пользования, но значительной установленной мощности. К таким приборами относятся, например, стиральные машины с подогревом воды, джакузи, посудомоечные машины с подогревом воды, электрические чайники, электрические сауны и др. Для этих приборов определялись коэффициенты спроса с последующим суммированием их расчетных нагрузок с нагрузками всех прочих приборов малой мощности, которые определялись с использованием усредненного значения коэффициента спроса.

Разработчиками Нормативов в качестве базовых исходных данных принято:

1. Средняя площадь квартиры (общая), м2:

в типовых зданий массовой застройки 70

в зданиях с квартирами повышенной комфортности

(элитные) по индивидуальным проектам 150

2. Площадь (общая) коттеджа, м2 50 — 600

3. Средняя семья, чел 3,1

4. Установленная мощность, кВт:

квартир с газовыми плитами 21,4

квартир с электрическими плитами в типовых зданиях 32,6

квартир с электрическими плитами в элитных зданиях 39,6

коттеджей с газовыми плитами 35,7

коттеджей с газовыми плитами и электрическими саунами 48,7

коттеджей с электрическими плитами 47,9

коттеджей с электрическими плитами и электрическими саунами 59,9

В табл. 2.1 приведена удельная расчетная нагрузка электроприемников квартир жилых зданий, а в табл. 2.2 — коттеджей.

Во «Временной инструкции по расчету электрических нагрузок жилых зданий» РМ2696-01 расчетную нагрузку на вводе в квартиру для домов I категории рекомендуется определять по формуле:

где Рз — заявленная мощность электроприемников, определяемая суммированием номинальных мощностей электробытовых и осветительных приборов, а также розеточной сети;

Таблица 2.1 Удельная расчетная электрическая нагрузка электроприемников квартир жилых зданий

Потребители электроэнергии

Удельная расчетная электрическая нагрузка, кВт/квартира, при числе квартир

Ток КЗ. От чего зависит величина тока короткого замыкания?

Ток КЗ

Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы хотим рассказать вам про ток КЗ (короткого замыкания) в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Далее рассмотрим ток КЗ для трехфазной цепи при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток КЗ во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Ток КЗ

Расчёт тока КЗ

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток КЗ в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Ток КЗ

Типичные значения напряжений короткого замыкания

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей пренебрегают.

Читайте так же:
Подключение одноклавишного выключателя с подсветкой схема подключения

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

Ток КЗ

Пример расчёта тока КЗ

На рисунке ниже приведено пояснение для данного примера.

Ток КЗ

Рисунок для расчета тока КЗ

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Ток КЗ

Расчёт тока короткого трехфазного замыкания

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, — имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Ток КЗ

Треугольник сопротивления

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

Ток КЗ

Расчёт полного сопротивления Zт

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Ток КЗ

Вычисление Xз

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Ток КЗ

Расчёт полного эквивалентного сопротивления Zкз

Pкз — мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети — Rа — очень мала, и сравнительно с индуктивным сопротивлением — ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.

Ток КЗ

Характеристики масляных трансформаторов

Ток КЗ

Характеристики сухих трансформаторов

Полное Zтр — сопротивление трансформатора на стороне низкого напряжения:

Ток КЗ

Расчёт полного сопротивления трансформатора Zтр

Pн — номинальная мощность трансформатора в киловольт-амперах. Активное сопротивление обмоток находится исходя из мощности потерь. Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток КЗ в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток КЗ на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования. Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.

Читайте так же:
Розетка с led подсветкой

Популярное изложение закона Ома

До детального изучения явления нужно вспомнить базовые определения из школьного курса физики. Основные зависимости описывает известная формула (закон Ома):

где:

  • I – сила (величина) тока в амперах (А), которая определяет плотность энергии в контрольном участке и при достаточной величине способна разогреть проводник до высокой температуры;
  • U – напряжение (ЭДС, разница потенциалов между определенными точками);
  • электрическое сопротивление (R) – препятствует прохождению электрического тока, увеличивается при нагреве проводника.

К сведению. Равный потенциал подразумевает отсутствие перемещения заряженных частиц между контрольными точками.


Закон Ома для участка цепи

«Магический» треугольник помогает запомнить основные формулы для расчета. Взаимные зависимости рассматриваемых параметров часто поясняют на примере с трубопроводом:

  • ток (движение заряженных частиц) подобен потоку;
  • напряжение – разница давления на входе и выходе;
  • сопротивление – внутренний диаметр, ограничивающий пропускные способности транспортной системы.

По приведенным аналогам несложно догадаться о том, что тонкий (толстый) проводник затрудняет (упрощает) прохождение тока. Дополнительные ограничения объясняются проводимостью определенного материала и наличием посторонних примесей.


Принцип действия

Внутреннее сопротивление – формула

Из представленной выше формулы понятно, что ток проходит по пути наименьшего электрического сопротивления. Этот процесс можно наблюдать, если разрушить изоляционные оболочки и соединить провода (уменьшить расстояние до критически малого уровня). Электрический пробой создает локальный нагрев. При значительном энергетическом потенциале такое воздействие провоцирует пожар, разрушает кабель.

На этом этапе рассуждений надо вспомнить следующую формулу:

По мощности определяют потребление энергии нагрузкой. Увеличение этого параметра повышает вероятность повреждения силовых линий.

Схема

Еще один способ изучения принципа токового действия это построение схемы. На данный момент для этого можно применить специальную программу. Благодаря ей можно не только понять, в какой ситуации случится короткое замыкание, но и попробовать его предотвратить, построив правильную электросхему и используя затем качественные материалы.

Обратите внимание! Стоит указать, что кроме дистанционного способа, есть возможность сделать схему самостоятельно, используя соответствующие учебные пособия. В результате такого действия можно сделать проверку вводного автоматического выключателя, имеющего средний номинальный ток на коммутационную способность в силовой кабельной линии. Благодаря схеме будет несложно определяться в токовых значениях.


Схема электротока

В целом, электроток короткого замыкания — разрушительная энергия, которая зависит от числа фотонов, спектра излучения, оптического свойства и прочего. Измерение его мощности можно произвести через специальную формулу. Имеет свой график и схему, которые представлены выше.

Что происходит в цепи при коротком замыкании

Рассчитать количество выделяемого тепла можно с помощью математического выражения закона Джоуля-Ленца:

Как рассчитать амперы

Расшифровка отдельных обозначений:

  • Q – тепло в калориях (кал);
  • k – поправочный коэффициент (0,239);
  • t – время в секундах.

К сведению. Для достаточно точных расчетов k принимают равным 0,24. Такое количество тепла выделяется при нагревании на 1°C одного грамма воды.

Эта зависимость в совокупности с рассмотренными выше формулами закона Ома объясняет критически быстрый (ударный) рост температуры при возникновении КЗ. В аварийной ситуации снижение сопротивления в цепи провоцирует увеличение тока. В соответствии с законом Джоуля-Ленца выделяется большое количество тепла (прямая квадратичная зависимость от I).


Экстремально быстрое повышение температуры объясняет потенциальную опасность возникновения открытого пламени

Использование этого явления

Данное явление нашло свое применение в дуговой сварке, принцип работы которой построен на взаимодействии стержня с металлической поверхностью. Поверхность нагревается до температуры плавки, благодаря чему появляется новое прочное соединение, т.е. сварочный электрод замыкается с заземляющим контуром.

Такие режимы короткого замыкания действуют непродолжительный промежуток времени. В момент сварки в месте соединения стержня и поверхности возникает нестандартный заряд тока, из-за чего выделяется большое количество теплоты. Ее достаточно для плавки металла и создания сварочного шва.

Также короткое замыкание используется в сфере промышленной автоматики, с его помощью создаются информационные системы, которые отражают параметры передачи токового сигнала.

Полезное КЗ применяется в электродинамических датчиках. Например, в индукционных виброметрах, сейсмических приемниках. Короткое замыкание дает возможность дополнительно уменьшить количество колебаний подвижной системы.

Режим КЗ может использоваться при объединении каскадов в электронике, когда выход первого активного компонента работает в режиме КЗ.

Цепи переменного тока

В легковом автомобиле двигатель внутреннего сгорания через передаточный механизм вращает генератор. Второй источник тока – аккумуляторная батарея. В бортовой сети есть цепи с переменным и постоянным током. Для изменения питающего напряжения применяют специальный преобразователь.


Электрическая схема автомобильного преобразователя напряжения (12-220V) для подключения усилителя мощностью 750 Вт

Для оценки постоянных составляющих тока применяют представленные выше формулы. Переменные – анализируют с учетом реактивных составляющих нагрузок. Индуктивные и емкостные характеристики изменяют фазы токов и напряжений, обеспечивают накопление и возврат электроэнергии обратно в источник питания.

Виды КЗ

При переменном токе увеличивается вероятность возникновения аварийных ситуаций. Если рассмотреть пример с источником 380 V (3 фазы), можно отметить следующие варианты КЗ:

  • при контакте фазы с нейтралью или заземлением – однофазное;
  • замыкание пары фазных проводников (в том числе с одновременным контактом с контуром заземления) – двухфазное;
  • КЗ между всеми тремя фазами.
Читайте так же:
Dns k42a619 как уменьшить ток подсветки

В трансформаторе замыкание образуется между витками либо при контакте проводящего элемента обмотки с заземленным корпусом.

От чего зависит

Ток короткого замыкания образуется в тот момент, когда генерируются и разделяются сгенерированные носители при помощи света, в дополнение к теме, как определить ток короткого замыкания источника. Часто он равняется светопотоку, поэтому считается минимальным. Зависит от:

  • площади и плотности;
  • число фотонов или мощности падающего показателя излучения;
  • световой интенсивности;
  • спектра падающего излучения;
  • оптического свойства, поглощения и отражения;
  • вероятности разделения СЭ, поверхностной пассивации и времени.

Обратите внимание! Также он зависит от возникающего в проводнике электрического поля, от времени и пути токового протекания. Находится в зависимости от заряда с его концентрацией, скоростью и площади поперечного проводникового сечения. Равен напряжению, поделенному на проводниковое сопротивление. Измеряется в амперах.


Зависимость электротока

Особенности расчёта

Для вычисления тока короткого замыкания формулы и методику выбирают с учетом особенностей сети. В следующих разделах публикации показано, как выполнить расчет самостоятельно.

Формулы вычисления трёхфазного замыкания

При выполнении работ с подобными системами подразумевают следующие исходные условия:

  • симметричность фаз;
  • номинальные электрические параметры источника питания берут с повышающим коэффициентом (+5%);
  • мощность пересчитывают к единому значению.

При подключении емкостной нагрузки следует учесть постепенное увеличение силы тока. Для трехфазной цепи подойдет формула:

Iкз = Uш/(√3 * (Zс + Zш)),

где:

  • Zс – сопротивление рассматриваемой системы;
  • Zш – сопротивление между точками шины – место КЗ.

Расчёт однофазной сети

Для этой ситуации ток КЗ определяется следующим образом:

Здесь сопротивление системы определяется значением Zс между проводниками фаза-ноль. Этот параметр вычисляют сложением активных и реактивных составляющих цепи.

Вычисление КЗ по паспортным данным

Эту методику применяют, если известны параметры отдельных функциональных устройств.

Сопротивление реактора:

Rр = (Rр% * Uн )/(100% √3 Iн),

где Rр% – относительная величина (%) при номинальном токе трансформатора (иного источника питания).

Сопротивление определяют по формуле:

где:

  • Uо% – изменение напряжения в обмотках (%) при прохождении тока в рабочем режиме;
  • Uн – номинальное напряжение (кВ);
  • Pн – мощность.

Итоговые формулы для КЗ:

  • Ток: Iкз = (Iн/ Rр%) * 100%;
  • Мощность: Pкз = (Pн/Uо%) * 100%.

Определение тока КЗ в сети неограниченной мощности

Аккумулятор накапливает ограниченную энергию, что объясняет сравнительно небольшие последствия короткого замыкания. Однако ситуация меняется при подключении к стационарной сети. В этом случае мощность источника намного больше суммарного потребления подключенных устройств. При расчете можно принять сопротивление проводников равным нулю.

Как проходит процесс

Несмотря на высокую скорость, развитие КЗ можно разделить на несколько этапов. Сначала сила тока несколько снижается (длительность цикла – 0,005-0,01 с.). Дальнейшее увеличение замедляется реактивными характеристиками подключенной нагрузки (индуктивностью). Напряжение после завершения переходного процесса стабилизируется.


График переходного процесса при подключенном генераторе с ограниченной мощностью

Методы защиты

Простейший, но достаточно эффективный автоматический «выключатель» показан на первой картинке. При увеличении плотности тока в цепи выше определенного уровня плавкая вставка разрушается.

Подобное устройство стоит недорого. Минусы:

  • медленное срабатывание;
  • отсутствие регулировок;
  • однократное применение.

Чтобы исключить перечисленные недостатки, рекомендуется применить специализированный автомат. Корректный выбор модели сопровождается оценкой чувствительности. Для упрощения оборудование этой категории разделено на группы. Класс В, например, будет отключать питание не более, чем за 0,015 с после регистрации двукратного увеличения тока, по сравнению с номиналом.

Источники

Источником выступает в быту поврежденная электрическая проводка, незаземленный кабель или нагретый поврежденный провод.

Стоит указать, что электроток происходит в одно-, двух- и трехфазной цепи во время замыкания фазы на землю или нейтрального провода, нескольких фаз, одновременного переключения фаз на землю. Бывает межвитковым и обмоточным на металлокорпус.

Чтобы защититься от него, нужно поставить токоограничивающего вида электрореакторы, распараллелить электроцепи, отключить секционные и шиносоединительные выключатели, использовать трансформаторы, имеющие расщепленную обмотку, использовать коммутационный аппарат, который отключает поврежденное оборудование. Также нужно применить релейную защиту вместе с плавкими предохранителями и автоматическими выключателями.

Вам это будет интересно Особенности теплого света


Источники

Выбор токоведущих частей и расчет токов короткого замыкания

Выбор кабелей от ЗРУ подстанции до проектируемого распределительного устройства 6 кВ.

Выбираем кабель для прокладки в земле марки ААПл — кабель с алюминиевыми жилами, с бумажной изоляцией, пропитанной вязким (нестекающим) составом, бронированный круглыми стальными оцинкованными проволоками (защитный покров типа Пл)

Расчетная мощность проектируемого распредустройства с учетом коэффициента разновременности составляет:

Pрасч = 5549 кВт; Qрасч = 4462 кВАр.

С учетом компенсации:

В задании на проектирование указаны максимальный и минимальный токи короткого замыкания. По максимальному току производится проверка электротехнического оборудования на электродинамическое и термическое действие, по минимальному — работоспособность релейной защиты и автоматики.

Читайте так же:
Bd9486f уменьшить ток подсветки

Так как расчет релейной защиты и автоматики не входит в задание, расчетный ток короткого замыкания на шинах распредустройства подстанции примем 8,5 кА. Будем считать ЭДС источника постоянной. Тогда действующее значение сверхпереходного тока короткого замыкания будет равно действующему значению установившегося тока короткого замыкания, то есть:

Определим приведенное время короткого замыкания, для этого примем время действия защиты 1,2 с (линия от ПС до РУ -6 кВ).

1. Определим сечение линии по нагреву:

Выбираем сечение кабеля 185 мм 2 (предварительный расчет показал, что кабель сечением 150 мм 2 не пройдет по условиям прокладки 2-х кабелей при условии выбора 2-х кабелей, проложенных в одной траншее), однако токовая нагрузка такого кабеля составляет всего 340 А, следовательно, необходимо использовать 2 кабеля, так как в этом случае токовая нагрузка уменьшается в 2 раза.

Коэффициент К1 учитывает аварийную перегрузку (коэффициент предварительной загрузки был равен (280,4/340) ≈0,8, по таблицам ПУЭ находим коэффициент 1,2 при продолжительности максимума 6ч), К2 учитывает количество прокладываемых кабелей в земле (в нашем случае 2 кабеля по таблицам ПУЭ находим коэффициент 0,9 при расстоянии в свету 100мм между ними).

Итак, 340 А > 259,63 А.

Следовательно, выбираем кабель ААШВ 2(3ģ185);

2. По термическому действию тока короткого замыкания.

Определяем действительное время короткого замыкания:

Определим периодическую составляющую для приведенного времени тока короткого замыкания:

для , так как действительное время К.З. больше 1 с, то определения апериодической составляющей не требуется.

Таким образом, сечение кабеля, выбранного по нагреву, удовлетворяет условию нагрева током короткого замыкания.

Отметим тот факт, что определение термической устойчивости определялось по току короткого замыкания на шинах подстанции, что является некоторым допущением. Однако найденное значение тока короткого замыкания на шинах РУ -6 кВ не приведет к противоречию между выбором сечения, так как ток в этом случае получится несколько ниже.

3.Определим сечение кабеля по экономической плотности тока:

Продолжительность использования максимальной нагрузки в нашем случае составляет 4000 ч.

По таблице справочника (13) определяем экономическую плотность тока :

2 в знаменателе указывает на то, что режим работы сети нормальный, работают два источника питания параллельно. Однако, приняв сечение без учета аварийной ситуации (отключение одного из вводов), кабель будет нести уже двойную нагрузку, то есть перегрузка составит 100%, что недопустимо, так как в этом случае предприятие полностью теряет питание — отключен один из вводов и выведен из строя кабель второго источника. Таким образом, вести расчет без учета аварийной ситуации становится неоправданным, так как при этом нарушаются начальные условия надежности, поэтому расчет велся на одну нить двухкабельного проводника (при желании можно было рассматривать 2 нити, результаты расчета в этом случае не отличаются от вышеприведенных).

Следовательно, сечение кабеля по экономической плотности тока составит 200 мм 2 . Стандартное ближайшее сечение составляет 185 мм 2 .

Определим потери напряжения в двухниточной кабельной линии в нормальном режиме:

Длина кабельной линии принята 2 км. Очевидно, что потери в кабельной линии длиной 1, 76 км будут меньше, поэтому расчет потери напряжения не производим.

Отклонение (снижение) напряжения, таким образом, составит приблизительно 3%- результат удовлетворительный, так как нормированное отклонение (снижение) напряжения составляет 5%.

По механической прочности кабели выбираются исходя из того, что минимальное значение сечения в таблице уже является механически стойким, следовательно, сечение 185 мм 2 является механически стойким.

По короне кабельные линии 6-10 кВ не проверяются ввиду отсутствия этого явления.

Итак, выбираем кабель, связывающий распределительное устройство подстанции и распределительное устройство проектируемого предприятия, для первого и второго источников питания:

Кабель ААПл 2(3ģ185)-6 (АО «ВНИИКП», Россия).

Дальнейшие расчеты по выбору токоведущих частей будут вестись параллельно с расчетом токов короткого замыкания.

Выбираем кабельную линию от проектируемого распределительного устройства до КТП №1:

Суммарная расчетная мощность КТП №1 составляет:

При этом на шинах НН подстанции установлены две ККУ с суммарной мощностью 804 кВАр.

Определяем сечение линии по нагреву:

Выбираем кабель той же марки, но уже для прокладки в воздухе.

ААШв 3ģ150 — 6. Допустимый ток 225 А.

В данном случае введения поправочных коэффициентов не требуется

Определим минимальное сечение термической стойкости кабельной линии:

для этого необходимо составить схему замещения, рассматриваемого случая:

На рисунке 1 изображена схема замещения для расчета токов короткого замыкания сети выше 1 кВ. Точки короткого замыкания определены соответственно на шинах РУ — 6 кВ, а также у выводов обмоток высшего напряжения у трансформаторов КТП (ввиду однотипности кабельных линий к КТП выбрано 3 точки короткого замыкания, так как расчет для параллельно работающих кабелей будет однотипным). Длины кабельных линий выбраны условно по причине отсутствия генплана предприятия.

Читайте так же:
Сечение кабеля от силы постоянного тока

Считаем, что ЭДС источников питания неизменны. Здесь необходимо отметить, что ничего общего нет между нахождением сопротивления системы бесконечной мощности, которая приравнивается к нулю в сетях высшего напряжения, когда источник короткого замыкания приближен к месту короткого замыкания и нахождением сопротивления по заданному току короткого замыкания на шинах подстанции. В нашем случае ток задан для шин подстанции, в этом случае отклонение периодической составляющей тока короткого замыкания от начального значения не превышает 10%.

В задании на проектирование не указаны типы выключателей на подстанциях, питающих РУ -6 кВ. Кроме того, не задано начальное значение сверхпереходного тока короткого замыкания. Учитывая то, что в сетях промышленных предприятиях обычно периодическая составляющая считается неизменной, то . Следовательно, по этим данным можно приблизительно оценить мощность питающей системы. Определим x*расч для турбогенераторов:

x*расч = 0,6 (по таблицам справочников).

Учитывая тот факт, что сверхпереходные значения токов короткого замыкания для двух источников одинаковы, следовательно, и мощности питающих систем одинаковы. Очевидно, что источники работают параллельно при отключенных секционных разъединителях[1], следовательно, будем рассматривать работу двух источников раздельно.

Определим ток короткого замыкания в точке К1:

Определяем сопротивление системы:

За значение базисной мощности в электроустановках напряжением выше 1 кВ рекомендуется принимать Sб = 10000 МВА.

Определяем базисный ток:

Кабельная линия от ЗРУ подстанции до проектируемого распредустройства:

Определим сопротивление системы:

Действительно, если проверить кабель (от ПС до РУ) на термическую стойкость по данному значению то минимальное сечение будет несколько меньше, чем рассчитанное выше.

Определим постоянную времени:

Определим ток короткого замыкания в точке К2 (для КТП №1).

Предварительно по нагреву был выбран кабель марки ААШВ сечением 150 мм

Для этого кабеля определим (по таблицам справочников или из технических данных) удельные активные и реактивные сопротивления:

Rуд150 = 0,206 Ом/км; Xуд150 = 0,074 Ом/км.

Определим ток короткого замыкания на выводах высшего напряжения трансформатора:

Определим суммарное сопротивление до точки К2:

Активные сопротивления учитывались в обоих случаях, так как не выполнялось условие: R* < X*/3.

Ток короткого замыкания в точке К2:

Постоянная времени:

Ударный ток короткого замыкания:

Время действия защиты для РУ -6 кВ (ступень селективности) примем равным 0,5 с.

Собственное время отключения выключателя примем 0,015 с (для выключателя ВВ/TEL).

Действительное время К.З составит:

Приведенное время для апериодической составляющей составит приблизительно 0,05 с.

Для систем с источниками питания, ЭДС которых неизменна во времени, можно считать, что tп.п = tд .

Таким образом, приведенное время К.З:

.

Минимальное сечение по условию нагрева током короткого замыкания:

Ближайшее меньшее стандартное сечение: 50 мм 2 .

По экономической плотности тока:

Стандартное ближайшее сечение 150 мм 2 .

По потере напряжения проверять кабель не имеет смысла по причине небольшой длины.

Таким образом, выбираем кабель ААШв 3ģ150 — 6.

Кабель работающий параллельно к двухтрансформаторной КТП №1 выбирается аналогично.

Произведем выбор кабелей к КТП №2 и КТП №3.

Определим расчетные токи для кабелей в случае выхода из строя одного из трансформаторов:

Для КТП №2:

Для КТП №3:

Отметим, что расчетные мощности для КТП даны с учетом потерь в трансформаторах, причем в аварийном режиме потери возрастают пропорционально квадрату коэффициента загрузки. Учет потерь не вносит в расчет и выбор токоведущих частей каких — либо значительных изменений, поэтому на этапе курсового проектирования их можно было и не учитывать. Итак, выбираем кабель ААШв 3ģ150 — 6.

Определим токи короткого замыкания в точках К3 .

Постоянная времени:

Ударный ток короткого замыкания:

Определим токи короткого замыкания в точках К4 .

Постоянная времени:

Ударный ток короткого замыкания:

Проверяем выбранные кабели на термическую устойчивость:

Минимальное сечение для кабеля второй КТП по условию нагрева током короткого замыкания определяется аналогично выбору термически стойкого сечения для КТП №1.

Ближайшее меньшее стандартное сечение: 50 мм 2 .

По экономической плотности тока:

Стандартное ближайшее сечение 150 мм 2 .

По потере напряжения проверять кабель не имеет смысла по причине небольшой длины.

По экономической плотности тока:

Стандартное ближайшее сечение 150 мм 2

Проверим кабель по потере напряжения:

Потери напряжения незначительны.

Расчет токов короткого замыкания проводился в относительных единицах. Расчет для кабельной линии длиной 1, 76 км проводится аналогично, поэтому приведем значения токов короткого замыкания без расчетных формул.

Итак, ток короткого замыкания на второй шине составит: 7,39 кА, действительно, так как линия короче, то ток будет несколько выше. Причем активным сопротивлением в данном случае принебрегли. Ударный ток короткого замыкания при коэффициенте ударном 1,4 составил на шине 14,7 кА.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector