Mpk-prometey.ru

МПК Прометей
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сенсорный выключатель схема к155

Управление светом в доме с помощью сенсорного датчика и Arduino

Для управления различными устройствами в настоящее время придумано достаточно много разнообразных кнопок, переключателей и датчиков. Одним из подобных устройств является сенсорный датчик, который еще называют датчиком касания – от англ. Touch Sensor. Сенсорные датчики значительно упрощают ввод информации и легко подключаются к различным микроконтроллерам. Сейчас наиболее распространены емкостные сенсорные датчики – его подключение к плате Arduino мы и рассмотрим в данном проекте. С его помощью мы будем включать и выключать свет в комнате.

Внешний вид проекта управления светом в доме с помощью сенсорного датчика и Arduino

Сенсорный датчик (датчик касания) TTP223

Сенсорный датчик, который мы будем рассматривать в данном проекте, состоит из модуля емкостного сенсорного датчика и драйвера датчика на основе микросхемы TTP223. Рабочее напряжение для микросхемы TTP223 составляет от 2 до 5,5 В. Потребление тока у этой микросхемы очень низкое. Благодаря относительно дешевой цене, низкому энергопотреблению и легкости интеграции в различную встраиваемую электронику сенсорные датчики TTP223 получили в настоящее время достаточно широкое распространение.

Внешний датчика TTP223 показан на следующем рисунке.

Внешний вид сенсорного датчика (датчика касания) TTP223

Как видно из представленного рисунка, распиновка датчика достаточно проста. На одной стороне платы датчика расположена сенсорная область размером 11 мм на 10,5 мм с диапазоном срабатывания около 5 мм. На другой стороне платы датчика установлена микросхема TTP223, светодиод, резисторы и конденсатор.

При подключении датчика TTP223 к питанию по умолчанию на выходе OUT устанавливается напряжение низкого уровня (LOW). Если прикоснуться пальцем к рабочей области датчика, то выход OUT переключается с низкого уровня на высокий и загорается встроенный светодиод датчика. При необходимости настройки датчика можно использовать перемычки А и В, а так же перемычку без подписи (по умолчанию перемычки не установлены).

Назначение перемычек сенсорного датчика TTP223

Назначение перемычек А и В:
► А – 0 / В – 0 – без фиксации состояния, при касании на выходе «1»
► A – 1 / B – 0 – без фиксации состояния, при касании на выходе «0»
► A – 0 / B – 1 – с фиксацией состояния (триггер), при касании на выходе «1»
► A – 1 / B – 1 – с фиксацией состояния (триггер), при касании на выходе «0»

То есть, перемычка А устанавливает логическое состояние на выходе «1» или «0» при нажатии, а перемычкой В включаем триггер и чтобы переключить состояние, необходимо повторно коснуться датчика.

Настройка чувствительности осуществляется с помощью добавления конденсатора от 0 до 50 пФ, где 0 пф соответствует максимальной чувствительности, а 50 пф – самой низкой чувствительности.

Для более подробного изучения принципов работы датчика рекомендуем вам посмотреть даташит на датчик TTP 223.

Немного о принципах работы реле

В этом проекте мы будем управлять включением/выключением электрической лампочки с помощью сенсорного датчика, платы Arduino и реле. Принцип работы реле различного типа показан на следующем рисунке.

Принцип работы реле

NO на этом рисунке обозначает нормально разомкнутые контакты, а NC – нормально замкнутые контакты. L1 и L2 – это выводы катушки реле. Когда на катушку реле не подано напряжения реле находится в выключенном состоянии – якорь (POLE) подключен к нормально замкнутому контакту. При подаче питания на катушку якорь реле подключается к нормально разомкнутому контакту.

Очень важно определить рабочие параметры реле перед тем как включать его в схему. Реле различаются, в частности, по рабочему напряжению, прикладываемому к катушке реле (контакты L1 и L2). Некоторые реле имеют рабочее напряжение 12 В, некоторые – 6 В, а некоторые – 5 В. Для нашего проекта мы использовали реле с управляющим (рабочим) напряжением 5 В с возможностью коммутации напряжения 250 В с током до 6 А.

Необходимые компоненты

  1. Плата Arduino Uno (купить на AliExpress).
  2. USB кабель для программирования и питания.
  3. Сенсорный датчик (Touch Sensor) TTP223 (купить на AliExpress).
  4. Транзистор BC549B (купить на AliExpress).
  5. Диод 1N4007 (купить на AliExpress).
  6. Резистор 2 кОм (купить на AliExpress).
  7. Резистор 4,7 кОм (купить на AliExpress).
  8. Реле с управляющим напряжением 5 В.
  9. Электрическая лампочка с держателем.
  10. Макетная плата.
  11. Соединительные провода.

Резистор 2 кОм, транзистор BC549B и диод 1N4007 можно заменить модулем реле.

Работа схемы

Схема управления светом в доме с помощью сенсорного датчика и платы Arduino представлена на следующем рисунке.

Схема управления светом в доме с помощью сенсорного датчика и платы Arduino

Транзистор используется для включения и выключения реле – он используется в связи с тем, что контакты платы Arduino не способны обеспечить ток, необходимый для срабатывания реле. Диод 1N4007 предназначен для блокировки (гашения) электромагнитных импульсов, возникающих при включении и выключении реле. Сенсорный датчик непосредственно подключен к плате Arduino.

Внешний вид собранной на макетной плате конструкции проекта показан на следующем рисунке.

Внешний вид собранной на макетной плате конструкции проекта

А на следующем рисунке показана схема соединений проекта на макетной плате.

Схема соединений проекта на макетной плате

Объяснение программы для Arduino

Полный текст программы приведен в конце статьи, здесь же мы кратко рассмотрим его основные фрагменты.

Для начала в программе нам необходимо подключить используемые библиотеки.

Схема выключателя освещения с сенсорным управлением (К561ТМ2, КП501)

Принципиальная схема простого самодельного выключателя лампы освещения с сенсорным управлением. Среди сенсорных электронных устройств особое место занимают узлы, питающиеся непосредственно от сети переменного тока 220 В.

Такие устройства содержат минимум деталей, легко повторяемы, не требуютдополнительного источника питания, но, несмотря на свою схемную простоту, не менее эффективны, более чувствительны и надежны (не допускают ложных срабатываний), чем их собратья с более сложной конфигурацией и элементной базой.

Читайте так же:
Ремонт выключателя чайника браун своими руками

То, что электронное устройство, где управляющий импульс образуется от наводок переменного напряжения в теле человека, не имеет развязки от сети, теоретически может пугать радиолюбителя, из-за кажущейся опасности передачи через сенсорный контакт переменного напряжения сети человеку. Но на самом деле эти опасения несостоятельны. Опасности поражения электрическим током здесь никакой нет.

Независимо от фазировки подключения в осветительную сеть устройство абсолютно безопасно для повторения и использования. Причина этому в том, что поражение током происходит именно силой тока, воздействующей на организм, а не напряжением.

Здесь же между сенсором и другими цепями схемы есть сопротивление достаточно большой величины, которое ограничивает ток через правильности соединения элементов надо выполнять при отключенном напряжении, а при подключенном в сеть устройстве нельзя касаться руками и неизолированным инструментом деталей и цепей, кроме сенсора.

Принципиальная схема

Рассмотрим схему. Принцип работы не отличается от любых электронных узлов, в основе которых имеется триггер (устройство с двумя устойчивыми состояниями). Устройство включит лампу накаливания Н1 от любого прикосновения к сонсору Е1 и оставит ее во включенном состоянии до тех пор, пока на сенсор Е1 не будет оказано повторного воздействия.

Принципиальная схема сенсорного выключателя для лампы освещения на 220В

Рис. 1. Принципиальная схема сенсорного выключателя для лампы освещения на 220В.

При повторном касании сенсора схема переключится в другое устойчивое состояние, и лампа накаливания EL1 окажется выключенной.

В литературе и интернете встречаются аналогичные схемы, в которых как и здесь D-триггер включен делителем частоты на два, и меняет свое состояние от каждого импульса, поступающего на его вход «С». Но там имеет место непосредственное соединение инверсного выхода триггера в входом «D».

В результате такая становится неработоспособной. Это происходит потому что при прикосновении человеком к сенсору из его тела на сенсор поступает сигнал новодки сети переменного тока. То есть сигнал частотой 50 Гц.

Этот сигнал преобразовывается каскадом на полевом транзисторе VT1 в импульсы, так же частотой 50 Гц. И эти импульсы и поступают на вход «С». В результате триггер включенный по выше указанной схеме, начинает переключаться с частотой 50 раз в секунду. И после прекращения воздействия на сенсор он оказывается в любом случайном состоянии.

Как вы понимаете, такой сенсорный выключатель будет работать крайне нестабильно. Чтобы этого не происходило в схему введена цепь задержки R5-C4, которая не позволяет триггеру переключаться слишком быстро. И благодаря именно этой цепи триггер четко переключается в противоположное состояние после каждого прикосновения к сенсору.

Кроме того, в схеме есть еще одна RC-цепь — R4-C3. Она предназначена устанавливать сенсорный выключатель в выключенное состояние после подачи на схему питания. Эта цепь нужна на случай временного отключения электроэнергии, чтобы после этого выключатель устанавливался в выключенное состояние, а не в произвольное.

Время нахождения триггера в каждом из двух устойчивых состояний не ограничено, пока на устройство подано питание. Узел триггера собран по на логической микросхеме D1 К561ТМ2. В схеме задействован только один элемент этой микросхемы.

С выхода микросхемы D1 управляющее напряжение поступает через резистор R6 на затвор ключевого высоковольтного мощного полевого транзистора VТ2.

Применение такого транзистора более выгодно по сравнению со схемами выходного каскада на тиристоре, потому что, во-первых, сопротивление его открытого канала существенно ниже чем у тристора или симистора и приближается с сопротивлению механических контактов.

Соответственно, на нем рассеивается меньшая мощность, во-вторых, ток управления пренебрежимо мал, что весьма согласуется с микросхемами КМОП-серии, не отличающиеся значительной модностью выхода.

Но есть и недостаток, — это относительно большая емкость затвора, из-за которой при изменении логического уровня на затворе VТ2 происходит короткий скачек тока через выход микросхемы, который временно перегружает выход микросхемы и может привести к сбою и произвольному переключению триггера.

Чтобы этого не произошло, в схеме есть резистор R6, ограничивающий ток зарядки емкости затвора VТ2 и диоды VD2 и VD3 подавляющие выброс напряжения на емкости затвора VТ2 в момент его открытия или закрытия.

Полевой транзистор VТ1 имеет большое (в несколько десятков мегаом) сопротивление перехода сток-исток-затвор, что препятствует попаданию тока электросети на сенсорный контакт, а резисторы R1 и R2 общим сопротивлением более 10 МОм ограничивают ток настолько, что прикосновение к сенсору Е1 не опасно, даже если полевой транзистор VТ1 выйдет из строя. Сенсор Е1 представляет собой обычный обойный гвоздь с крупной металлической шляпкой в форме цветка.

Наведенное на сенсоре электрическое поле переменного напряжения поступает на затвор полевого транзистора VТ1, и на его истоке образуются импульсы с частотой сети и напряжением логического уровня. Они поступают вход «С» (вывод 3 D1).

Триггер меняет свое состояние только от первого импульса, а на остальные не реагирует в течение времени около одной секунды, которое обеспечивается цепью R5-C4. Мерцания лампы в данной схеме практически нет, так как полевой транзистор VТ2 работает как механический контакт, а не как тиристор, то есть, его состояние «открыт/закрыт» не зависит от фазы напряжения сети.

Детали

При мощности лампы менее 200W радиатор транзистору VТ2 не требуется. Нагрузка может быть мощностью до 2000W, но тогда с радиатором. В отличие от схемы с тиристором здесь ограничения по минимальной мощности нагрузки нет.

Читайте так же:
Установка выключателя расстояние от двери

Электронный проходной выключатель

Электронный проходной выключательКоридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Коридорный выключатель с двумя переключателями

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Коридорный выключатель с тремя переключателями

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент – переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения.

Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными, а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали — свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства – триггера. Более подробно о различных триггерах можно почитать в цикле статей «Логические микросхемы. Часть 8».

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме – с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Проходной выключатель на триггере К561ТМ2

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C – вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R – вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS – входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Источник питания

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Бестрансформаторный источник питания

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

“TTP223” – сенсорная кнопка (с фиксацией/без фиксации)

Сенсорная кнопка “TTP223” выполнена на базе микросхемы “TTP223-BA6” в виде бескорпусной платы на емкостном принципе, и может работать в режиме с фиксацией и без фиксации включения при касании рукой или поднесении руки на небольшое расстояние (до 5 мм).

Датчик касания модуля “TTP223” имеет площадку в виде металлизированной поверхности печатной платы с надписью “touch”, при поднесении или касании его рукой, происходит включение светодиода на плате и на выходе “Q” появляется напряжение. На плате имеются две перемычки для настройки режимов выхода “Q” (перемычка A (AHLB) – настройка 0 или 1 на выходе и перемычка B – вкл./выкл. фиксации переключения)

Сенсорная кнопка - модуль "TTP223" с фиксацией/без фиксации - вид сверхуСенсорная кнопка – модуль “TTP223” с фиксацией/без фиксации – вид сверху Сенсорная кнопка - модуль "TTP223" с фиксацией/без фиксации - вид снизуСенсорная кнопка – модуль “TTP223” с фиксацией/без фиксации – вид снизу Принципиальная схема сенсорного модуля "TTP223" Принципиальная схема сенсорного модуля “TTP223”

Подключение емкостной кнопки:

Схема подключения “TTP223” к силовому ключу “IRF520”:

Схема подключения к силовому ключу "IRF520"

Технические характеристики “TTP223”:

  • Напряжение питания постоянного тока, В: 2 – 5.5
  • Потребляемый ток (в покое, при VCC= 3 В), мкА: 70
  • Потребляемый ток (при срабатывании, при VCC= 3 В), мА: 5
  • Потребляемый ток (в покое, при VCC= 5 В), мкА: 130
  • Потребляемый ток (при срабатывании, при VCC= 5 В), мА: 16
  • Выходной уровень (при VCC= 3 В), В: 2.6 (высокий) / 0 (низкий)
  • Выходной уровень (при VCC= 5 В), В: 4 (высокий) / 0 (низкий)
  • максимальное время срабатывания (при VCC= 3 В), мС: 220
  • Размеры платы, мм: 11*15

Выводы микросхемы “TTP223-BA6”:

№ выводаназв. выводатипописание
1QOS push-pull outputCMOS выход
2VSSGround“-” источ. пит.
3ICMOS I/Oвход сенсора
4AHLBCMOS input and pull-low resisterПри подаче на этот вход лог.единицы, на выходе – Q будет лог. ноль при касании датчика. Если нет касания, то на выходе – Q будет “1”.
5VDDPower“+” источ. пит.
6TOGCMOS input and pull-low resisterПри подаче на этот вход лог.единицы выход – Q работает в режиме переключателя (switch).

Настройка выхода модуля:

подача на вход “TOG” 0 или 1подача на вход “AHLB” 0 или 1Режимы выхода “Q”
прямой режим,
при касании на выходе “1”
1прямой режим,
при касании на выходе “0”
1режим триггера,
состояние выхода после включения питания – “0”
11режим триггера,
состояние выхода после включения питания – “1”

Регулировка чувствительности емкостного датчика:

  1. для ее увеличения надо увеличить размер контактной площадки сенсора, для этого с помощью отверстия на площадке, к ней припаивается короткий провод, который соединяется с новой увеличенной контактной площадкой.
  2. также для увеличения чувствительности можно уменьшить толщину стенки корпуса, за которой будет находиться датчик
  3. еще один способ увеличения чувствительности – не использовать конденсатор C3 (когда его нет чувствительность максимальная, когда установлен C3 = 50 пикофарад – минимальная). С3 можно использовать в диапазоне от 0 до 50 пФ.

Применение сенсорного датчика “TTP223”:

замена обычных кнопок и выключателей
сенсорный выключатель (touch switch)
выключатель для водонепроницаемых приборов
датчик касания

Как собрать сенсорный выключатель своими руками: описание и схема сборки

Электронные технологии охватывают обширный спектр бытовой сферы. Ограничений нет практически никаких. Даже простейшие функции выключателя ламп бытового светильника теперь все чаще выполняют сенсорные приборы, а не технологически устаревшие — ручные.

Электронные устройства, как правило, входят в разряд сложных конструкций. Между тем соорудить сенсорный выключатель своими руками, как показывает практика, совсем несложно. Минимального опыта конструирования электронных приборов для этого вполне достаточно.

  • Конструкция сенсорного выключателя
  • Опции и возможности устройства
  • Правила подключения прибора
  • Выключатель на сенсорах своими руками
    • Схема сенсорного коммутатора на триггере
    • Схема на основе инфракрасного датчика
    • Простейшая схема на транзисторах и реле

    Конструкция сенсорного выключателя

    Термин «сенсорный» несет в себе довольно широкое определение. По сути, под ним следует рассматривать целую группу датчиков, способных реагировать на самые разные сигналы.

    Однако применительно к выключателям – приборам, наделенным функционалом коммутаторов, сенсорный эффект чаще всего рассматривают как эффект, получаемый от энергетики электростатического поля.

    Сенсорные выключатели света

    Обычному пользователю достаточно прикоснуться пальцами руки к такому контактному полю и в ответ будет получен тот же самый результат коммутации, какой дает стандартный привычный клавишный прибор.

    Между тем внутреннее устройство сенсорного оборудования существенно отличается от простого ручного выключателя. Обычно такая конструкция выстраивается на основе четырех рабочих узлов:

    • панель защитная;
    • контактный датчик-сенсор;
    • электронная плата;
    • корпус устройства.

    Разновидность приборов на базе сенсоров обширна. Выпускаются модели с функциями обычных выключателей. И есть более совершенные разработки – с регуляторами яркости, отслеживающие температуру окружения, поднимающие жалюзи на окнах и прочие.

    Конструкция сенсорного выключателя

    Мало того, что все эти виды коммутаторов управляются легким прикосновением, так существуют еще и варианты, где управление доступно при помощи дистанционного пульта.

    То есть, выключить светильник или убрать яркость свечения ламп прибора пользователь может, не совершая лишних движений в виде перехода от места отдыха к выключателю.

    Опции и возможности устройства

    Отдельного рассмотрения явно заслуживает разработка сенсорного изделия коммутации, оснащенного таймером. Здесь присутствуют традиционные характеристики, такие как:

    • бесшумность действия;
    • интересный дизайн;
    • безопасное использование.

    Помимо всего этого, добавляется еще одна полезная функция – встроенный таймер. С его помощью пользователь получает возможность управлять коммутатором программно. К примеру, задавать время включения и отключения в определённом временном диапазоне.

    Как правило, подобные приборы имеют не только таймер, но также аксессуар иного рода – например, акустический датчик.

    В этом варианте устройство работает как контроллер движения или шума. Достаточно подать голос либо хлопнуть ладонями и лампы светильника в квартире загорятся ярким светом.

    Кстати, на случай слишком высокой яркости существует очередной функционал – диммерная регулировка. Оснащенные диммером коммутаторы сенсорного типа позволяют управлять интенсивностью света.

    Акустические выключатели света

    Правда, есть один нюанс для подобных разработок. Диммеры, как правило, не поддерживают использование в светильниках люминесцентных и светодиодных ламп. Но устранение этого недостатка, скорее всего, вопрос времени.

    Правила подключения прибора

    Технология монтажа подобных устройств, несмотря на совершенство конструкций, осталась традиционной, как это предусмотрено для стандартных выключателей света.

    Обычно на задней части корпуса изделия присутствуют два терминальных контакта – входной и под нагрузку. Обозначаются на устройствах иностранного производства маркерами «L-in» и «L-load».

    Подключение приборов сенсорного действия

    Эти обозначения должны быть понятны даже неискушенному пользователю. Однако в любом случае рекомендуется обращаться к паспорту устройства перед его установкой. Коммутация в схеме прибора осуществляется по фазной линии.

    То есть, на вход «L-in» подается фаза — подключается фазный проводник. А с линии «L-load» снимается напряжение для нагрузки — в частности, для лампы светильника.

    Между тем конструкции сенсорных выключателей могут предусматривать подсоединение нескольких независимых нагрузок. На таких приборах количество терминалов для подключения увеличивается.

    Дополнительно с терминалом входящего напряжения «L-in» присутствуют уже два или даже три отверстия под нагрузку «L-load». Маркируются обычно примерно так: «L1-load», «L2-load» и т. д.

    Элементы сенсорного выключателя

    Монтаж сенсорных коммутаторов также фактически не отличается от стандартного варианта. Конструкция выключателей изготовлена под размещение в традиционных подрозетниках. Крепление шасси рабочего механизма прибора, как правило, осуществляется винтами.

    Выключатель на сенсорах своими руками

    Приобрести выключатель сенсорного типа для домашнего использования, конечно, не проблема. Однако стоимость этих, своего рода интеллектуальных, приборов начинается от 1500-2000 руб. И это цена не самых совершенных конструкций. Поэтому логичным видится вопрос – а можно ли сделать сенсорную коммутацию света своими руками?

    Для людей, мало-мальски знакомых с теорией электротехники, сооружение выключателя с применением сенсора — работа вполне выполнимая. Есть масса схемных решений на этот счет.

    Схема сенсорного коммутатора на триггере

    Многие схемы изготовления приборов подобного действия простые и понятные. Рассмотрим одно из многочисленных решений, которое можно реализовать своими руками для применения в домашних условиях.

    Цена сенсорного выключателя

    Широко распространенная в радиолюбительской практике микросхема серии K561TM2 является главным звеном сенсорного выключателя, собираемого своими руками.

    Микросхема К561ТМ – это триггер, состояние которого можно изменять подачей управляющего сигнала на его вход. Это свойство успешно используется для реализации функции коммутатора.

    Входная цепь построена с добавлением полевого транзистора V11, который обеспечивает высокую чувствительность по входу и дополнительно хорошо изолирует вход от выхода.

    Элемент сенсора Е1 схемы изготавливается в виде металлической пластины и подключается на вход «полевика» через резистор с большим сопротивлением. Так гарантируется безопасность устройства для пользователя в плане возможного поражения электротоком.

    Схема сенсорного выключателя первая

    Выходная часть схемы построена на связке биполярный транзистор VT2 – тиристор тока VS1. Транзистором усиливается сигнал, исходящий с микросхемы, а тиристор исполняет роль коммутатора. В цепь тиристора включается прибор освещения, которым требуется управлять.

    Схема работает так:

    1. Пользователь касается металлической пластины (сенсора).
    2. Статическое электричество поступает на вход VT.
    3. Полевой транзистор переключает триггер.
    4. Выходной сигнал триггера усиливается VT2 и открывает тиристор.
    5. Лампа в цепи тиристора загорается.

    Если пользователь прикоснётся к сенсору повторно, все операции повторяются, но с обратным переключением режимов. Все просто и эффективно.

    Такое схемное решение допустимо использовать для управления светильниками, где общая мощность ламп накаливания составляет не выше 60 Вт.

    Если необходимо коммутировать более мощные приборы света, можно дополнить тиристор объемным радиатором охлаждения. Металл для сенсора рекомендуется применять из серии материалов, хорошо проводящих ток. Оптимальный вариант — посеребренная медь.

    Схема на основе инфракрасного датчика

    Доступна для самостоятельной сборки схема коммутатора света, где в качестве сенсора применяется ИК-датчик. Здесь также используются доступные и недорогие электронные компоненты.

    По степени сложности исполнения этот вариант рассчитан на электронщиков, которые только начинают свою карьеру.

    Вторая схема сенсорного выключателя

    Базовой электроникой в этом решении выступают две микросхемы и следующие элементы:

    • светодиод обычный — HL1;
    • светодиод инфракрасный — HL2;
    • фотоприемник — U1;
    • реле — К1.

    На базе микросхемы-инвертора DD1 собран генератор импульсов, а на базе микросхемы DD2 функционирует системный счетчик.

    При определенных обстоятельствах, например, когда в зоне действия инфракрасного светодиода появляется биологический объект, срабатывает пара ИК-светодиод и фотоприемник. На базе транзистора VT1 появляется управляющий сигнал, которым включается реле К1. Светильник в цепи К1 загорается.

    Если движение объектов в зоне действия инфракрасного датчика не отмечается, через 20 минут простоя счетчик насчитает количество импульсов от мигающего светодиода HL1, достаточное для отключения реле. Светильник отключится. Время ожидания (в этом случае 20 минут) определяется подбором элементов схемы.

    Простейшая схема на транзисторах и реле

    Максимально упрощенное решение – схема для самостоятельной сборки прибора сенсорного типа, которая представлена ниже.

    Третья схема сенсорного выключателя

    Здесь допустимо применить практически любой тип реле. Главный критерий – диапазон рабочих напряжений 6-12 вольт и способность коммутировать нагрузку в сети 220 вольт.

    Сенсорный элемент изготавливается путем вырезания из листа фольгированного гетинакса. Транзисторы также можно использовать любой серии, аналогичные по параметрам указанным, например, распространенные КТ315.

    По сути, эта простая схема представляет обычный усилитель сигнала. При касании поверхности сенсора на базе транзистора VT1 появляется потенциал, достаточный для открывания перехода эмиттер-коллектор.

    Следом открывается переход VT2 и напряжение питания подается на катушку реле К1. Этот прибор срабатывает, его контактная группа замыкается, что приводит к включению прибора света.

    Выводы и полезное видео по теме

    Этот обзор позволяет ближе познакомиться с коммутаторами света, быстро набирающими популярность в обществе.

    Сенсорные выключатели, отмеченные продуктовой маркой Livolo, — что это за конструкции и насколько привлекательны они для конечного пользователя. Видео гид по коммутаторам нового типа поможет получить ответы на вопросы:

    Завершая тему сенсорных коммутаторов, стоит отметить активное развитие в области разработки и производства выключателей для бытового и промышленного использования. Выключатели света, казалось бы, простейшие конструкции, совершенны уже настолько, что теперь управлять светом можно голосовой кодовой фразой и при этом получать полную информацию о состоянии атмосферы внутри помещения.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector