Mpk-prometey.ru

МПК Прометей
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор проводников по нагреву, допустимый длительный ток для кабелей и проводов

Выбор проводников по нагреву, допустимый длительный ток для кабелей и проводов

При выборе проводников по нагреву перед проектировщиком встает сложная и трудоемкая задача — определение температуры проводника с учетом всех переходных процессов, происходящих в нем, и условий окружающей среды (условий охлаждения). Эта работа по большей своей части была проведена заранее и ее результаты (при стандартных начальных условиях) сведены в соответствующие таблицы раздела 1.3 Правил устройств электроустановок.

Следует лишь провести корректировку начальных условий по температуре окружающей среды или допустимому перегреву изоляции. При этом каждому сечению проводника сопоставлен длительно допустимый ток, при протекании которого по проводнику при стандартных внешних условиях (учитывается расположение проводника и сопоставленная расположению нормированная расчетная температура окружающей среды: +15 °C в земле и +25 °C на воздухе), устанавливается длительно допустимая температура жил.

Эта температура определяется типом изоляции проводника и указывается в соответствующих пунктах раздела 1.3 Правил устройств электроустановок. По таблицам, на которые ссылаются соответствующие пункты данного раздела правил, производится выбор сечения проводника с ближайшим большим по отношению к расчетному току значением длительно допустимого тока.

Электрический кабель

Если провода и кабели прокладываются в лотках и располагаются рядом друг с другом, следует учитывать их взаимное влияние. В этом случае длительно допустимый ток каждого выбираемого кабеля умножается на соответствующий понижающий коэффициент, который можно определить с учетом требований п. 1.3.11 Правил устройства электроустановок.

Для последующих расчетов важно определить температуру токопроводящих жил при протекании по ним расчетного тока нагрузки. Расчет производится по следующей формуле:

Определение температуры токопроводящих жил при протекании по ним расчетного тока нагрузки

В формуле учитывается температура окружающей среды (принимается равной 25 °C при прокладке в воздухе и 10 °C при прокладке проводников в земле), температура жил при нагреве длительно допустимым током и температура жил при нагреве расчетным током.

Допустимый длительный ток для кабелей (таблицы из ПУЭ)

Таблица 1.3.3. Поправочные коэффициенты на токи для кабелей, неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха

Поправочные коэффициенты на токи для кабелей, неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией

Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Допустимые токовые нагрузки проводов

Электрический ток, протекающий по проводникам линий электрической сети, нагревает токоведущие жилы. Одновременно происходит охлаждение проводников путем отвода тепла в окружающую среду.

Через некоторое время, если величина протекающего в проводниках тока не меняется, температура проводника достигает некоторого предельного значения, которое в дальнейшем остается неизменным.

Наибольшая допустимая температура для проводов и кабелей определяется условиями безопасности, надежности и экономичности.

Излишне высокая температура изолированного провода или кабеля служит причиной быстрого износа изоляции и сокращения срока службы проводки.

Особенно опасным является перегрев изоляции проводников в пожароопасных и взрывоопасных помещениях, где воспламенение изоляции может вызвать пожар или взрыв.

Таким образом, величина токовой нагрузки на проводник заданного сечения должна быть ограничена, с тем чтобы наибольшая температура проводника не превышала определенного предела. ПУЭ устанавливают следующие наибольшие допустимые температуры при нагревании длительной токовой нагрузкой: голые провода и шины 70С, провода и кабели с резиновой или пластмассовой изоляцией +65С, кабели с бумажной изоляцией на напряжение до 3000 В +85С.

Читайте так же:
Supra stv lc42t410fl убавить ток подсветки

Допустимые токовые нагрузки зависят от сечений проводника, его конструктивного выполнения и условий охлаждения.

Нормальными условиями при прокладке проводов и кабелей в воздухе считается температура воздуха +25С, причем расстояние в свету между соседними кабелями при прокладке их внутри и вне зданий и в туннелях должно быть не менее 35 мм и при прокладке в каналах не менее 50 мм. Число прокладываемых кабелей не ограничивается. Нормальной температурой при прокладке кабелей в земле или в воде считается +15С. Допустимые нагрузки для кабелей, проложенных в земле, приведены при условии прокладки в траншее одного кабеля.

Если условия прокладки проводов и кабелей отличаются от нормальных, величина допустимой нагрузки Iд (А) на провод или кабель определяется с учетом поправочного коэффициента:

Где Iдн — табличное значение допустимой нагрузки при нормальных условиях, А; Кп — поправочный коэффициент, учитывающий изменение условий охлаждения проводника.

Поправочные коэффициенты Кп1 на температуру земли и воздуха для токовых нагрузок на кабели, провода и шины

Поправка на температуру окружающей среды, если фактическая температура окружающей среды отличается от нормальной, вводится поправочный коэффициент Кп1, величина которого определяется по таблице в зависимости от допустимой максимальной температуры проводника и фактической температуры среды.

Поправка на число кабелей, проложенных в одной траншее. При прокладке в общей траншее более одного кабеля вводится поправочный коэффициент Кп2, определяемый по таблице.

Поправочные коэффициенты Кп2 на число кабелей, проложенных рядом в земле, в трубах и без труб

Не нагруженные резервные кабели при этом не должны учитываться.

Поправка на повторно-кратковременный и кратковременный режим работы. Основное время работы двигателя, это работа в момент обработки детали, при смене детали, двигатель останавливается. Таким образом, время работы двигателя чередуется со временем отключения. Понятно, что проводники линии, питающие двигатель с таким режимом работы, находятся в лучших условиях охлаждения по сравнению с проводниками такой же линии, несущей нагрузку без перерывов, проводники линии с повторно-кратковременным режимом работы допускают увеличение нагрузки, учитываемое поправочным коэффициентом Кп3, который определяется по формуле:

Где ПВ — относительная продолжительность рабочего периода, равная отношению времени включения линии к общей длительности времени включения и отключения,

Где: tр — длительность рабочего периода; tц — общая длительность цикла.

Необходимо отметить, что коэффициент, учитывающий увеличение допустимой нагрузки на проводник, может быть применен лишь при следующих условиях:

— продолжительность рабочего периода цикла повторно-кратковременного режима работы не превышает 4 минут, а продолжительность отключения — не менее 6 минут;

— сечение медных проводников не ниже 10 мм кв. и сечение алюминиевых проводников не ниже 16 мм кв.

Если условия работы проводки требуют введения нескольких поправок, то общий поправочный коэффициент определяется произведением отдельных коэффициентов.

Пример по теме № 1. Определить допустимую длительную токовую нагрузку на трехжильный кабель с алюминиевыми жилами с бумажной изоляцией на напряжение до 3000 В сечением 3х120 мм кв., проложенный в траншее при температуре почвы +25 С. Всего в общей траншее проложено семь кабелей; расстояние между ними в свету 100 мм. Один кабель резервный и нагрузки не несет.

Решение. По таблице П-3 находим допустимую длительную токовую нагрузку для кабеля сечением 3х120 мм кв., при нормальных условиях прокладки в земле: Iдн = 300 А.

Сечение провода и нагрузка таблица

По таблице П-5, приведенной выше находим значение поправочного коэффициента на температуру почвы +25С для нормированной температуры жил кабеля +80 С: Кп1 = 0,92. Напомним, что при прокладке в земле за нормальную температуру принимается +15С.

По таблице П-6, приведенной выше, находим значение поправочного коэффициента на число проложенных в траншее кабелей при расстоянии между ними в свету 100 мм (число работающих кабелей без учета резервного равно шести) Кп2 = 0,75.

Общий поправочный коэффициент равен произведению найденных коэффициентов: Кп = 0,92·0,75 = 0,69

Величину допустимой нагрузки на кабель с учетом ухудшения условий охлаждения кабеля:

Длительно-допустимые токовые нагрузки кабелей

Таблица допустимых токов по сечениям проводов

Токи, протекающие по кабелю, нагревают проводник. Это не относится к полезному действию тока, как например, нагревание спирали лампочки или электрической плитки. Поэтому мы и не учитываем это действие, когда рассчитываем общую мощность потребления. Однако забывать о расходе энергии на нагревание проводов не следует, так как это может привести к печальным последствиям.

Читайте так же:
Монтаж проводки освещения выключателя

Величина тока, протекающего по проводам, зависит от мощности устройств-потребителей, так как мощность, выделяемая на самих проводах, пренебрежимо мала — в связи с малым удельным сопротивлением металлов, используемых для провода и в кабеле проводки. Ток течет только тогда, когда мы включаем в сеть приборы. При этом суммарный ток в каждый момент времени определяется только мощностью приборов (связанной с сопротивлением), потребляющих энергию в сети именно в этот момент времени. Но при расчете сети по току и мощности всегда необходимо брать только ситуации, когда одновременно включены все потребляющие устройства. Только такой подход дает возможность застраховаться от всех возможных перегрузок. Но и это еще не все. В момент включения многие устройства потребляют так называемый стартовый ток, который может быть процентов на 10–20 выше по потреблению от стационарной работы данного устройства. Это связано у некоторых устройств с трудностью запуска — разгона массивных роторов, создания рабочих перепадов давления и так далее. Поэтому при выполнении расчета требуется делать поправку еще и на это.

Допустимый длительный ток для кабелей

Токонесущие провода под действием тока нагреваются всегда. Весь вопрос только в количестве выделяемой теплоты. С одной стороны, она зависит от протекающего тока, удельного сопротивления материала проводника, его сечения, с другой — от факторов отведения тепла в условиях прохождения проводов: от количества проводов и их близости, изоляции, которая препятствует теплоотводу, наличия коробов или каналов, в которые заправлен кабель, скрытности проводки. И вообще, от климатических факторов, действующих на кабель в местах прохождения проводов: вентиляции, открытого пространства и так далее.

Качество проводки и старение

В результате действия всех этих многочисленных факторов провод, систематически нагревающийся от проходящего по нему тока, с точки зрения безопасности может быть:

  • Надежным носителем тока и напряжения. У такого провода срок будущей безаварийной работы можно считать неограниченным.
  • Старым или стареющим носителем электроэнергии. Качество провода за время эксплуатации снизилось, ухудшилась изоляция, стыки и соединения проводов потеряли часть проводимости. Старение провода имеет склонность со временем накапливаться и способствовать увеличению скорости старения и возрастанию отрицательных факторов.
  • Опасной проводкой электроэнергии. Режим работы таков, что аварии вероятны. Это выражается в увеличении нагрева проводов на обычном токе, неравномерности нагрева из-за ухудшения изоляции, окислении контактов, ухудшении равномерности сечения проводов из-за естественного для металлов окисления. Неравномерности тоже имеют свойство усиливать старение и локально ухудшать качество.

Температура, таким образом, является очень важным показателем безопасности работы электрической проводки. Кроме того, температурный режим сам по себе способен ухудшать проводку, а в случаях превышения предельного порога приводить к авариям. В результате допустимые токовые нагрузки кабелей должны быть уменьшены.

Например, есть такое правило, что каждые 8° лишнего нагрева кабеля по току ускоряют процессы (и химические, и физические) в материале в два раза. Это отражается на характеристиках проводника (особенно алюминиевого) и ухудшает характеристики изолятора.

Изоляция и температура

Изоляция в результате нагрева сама может стать источником опасных и вредных факторов. Например, ПВХ при увеличении температуры ведет себя так:

  • 80 °С — размягчение;
  • 100 °С — выделение HCl (летучего вредного газа, хлористого водорода, который при растворении в воде становится соляной кислотой). С повышением температуры процесс усиливается. При 160 °С его уже выделится 50%, при 300 °С — 85%;
  • 210 °С — плавление;
  • 350 °С — начинается возгорание углеродной основы ПВХ.

Это касается твердого ПВХ, мягкий содержит много добавок-пластификаторов, которые улетучиваются и способны загореться уже при 200 °С.

Размягчение, тем более плавление, кроет в себе другую опасность — могут сблизиться несущие ток провода, что обычно приводит к КЗ и возгоранию.

По соображениям безопасности верхней границей температуры проводов, по которым проходит электрический ток, установили 65 °С. Это при окружающей температуре воздуха 25 °С, земли — 15 °С.

Читайте так же:
Светодиодная подсветка выключателей ваз

Задача выдержать такую норму нагрева состоит в том, чтобы для всего разнообразия условий подобрать сечения для проводов из разных материалов, применяемых в электротехнике, достаточные для безопасного, то есть без накопления тепла, прохождения тока.

Обязательным условием является то, что имеется в виду допустимый длительный ток для кабелей, а не кратковременные перегрузки.

От внезапных перегрузок по току провода и кабели должны защищать автоматы на щите питания.

Причем их номиналы подбираются так, чтобы они были выше токов, возникающих при кратковременных, но допустимых перегрузках, но ниже опасных для сети перенапряжений.

Структура проводки потребляющей сети

Потребляющая сеть состоит из нескольких групп потребителей. В каждой из них свой характер нагрузок и режим токов, следовательно, и проводка должна соответствовать правилам безопасности. Самое главное правило: должна быть обеспечена высокая нагружаемость там, где нагружено. То есть вводные провода, несущие всю тяжесть потребления в сети, должны быть самыми большими по сечению, поскольку через них идет расход энергии на всю мощность нагрузок в рассматриваемой сети.

Пример. Расчет сечения кабеля для квартирной потребляющей сети

В таблице приведены приборы потребления

Номинальная мощность,
кВт

Ток шины из формулы суммарной мощности

Формула суммарной мощности

при KИ , коэффициенте использования, равном 75% и cos j = 1,

получается в диапазоне I = 41–81 А. Для проводки, учитывающей любые возможные варианты мощностей подключаемых электроприборов, следует брать верхнее значение и запас на будущее порядка 10–20%. Поэтому принимаем максимальный ток, равный 100 А.

Возможно, такая нагрузка ляжет на шины домовой сети тяжким бременем, и электроснабженческая организация не разрешит иметь столько потребителей сразу, однако выбор проводов не должен зависеть от таких «политических» вопросов. Тем более что проводка в старых домах уже демонстрирует недальновидность прежних ограничений.

Сечение шин, подведенных к квартирам, надо принимать как данность. Если мы делаем разводку в квартире сами, то делим ее на несколько подсетей по группам по току потребляющих устройств. От шин щитка питания каждая подсеть будет запитана отдельно. И выполнять ее нужно с расчетом на максимальное потребление именно в этой подсети.

ПУЭ — правила устройства электроустановок

Для регламентации безопасности, касающейся всего, что связано с электроэнергией, существует система правил, которые начали разрабатываться с самого начала использования электроэнергии (1899 год, Первый всероссийский электротехнический съезд) и приводиться в систему, близкую к современной, сразу после Великой Отечественной войны в 1946–1949 годах. И существуют и продолжают разрабатываться и сейчас — в России, Белоруссии и на Украине.

Электробезопасность — это очень серьезно, несмотря на расхождения во взглядах где-то еще. У нас, например, предусматриваются и штрафы за несоблюдение правил устройства электроустановок для граждан, должностных лиц и предпринимателей и для юридических лиц.

То, что касается безопасности электропроводки, собрано в 1 разделе в 3 главе.

В таблицах отображен допустимый длительный ток для кабелей для множества вариантов проводов, металлов (разное удельное сопротивление), изоляции, характера (одножильный – многожильный), сечения провода, а также способов прокладки кабеля.

Полный текст 3 главы из 1 раздела 7-го издания ПУЭ имеется в следующем файле. Допустимый длительный ток для кабелей в них представлен в таблицах 3.1.7.4 – 3.1.7.11.

Для нашего примера построим таблицу, разбив всех потребителей на группы, в каждой группе посчитаем суммарную мощность, ток и найдем по ПУЭ соответствующее ему сечение кабеля для меди и алюминия.

В нашем случае выделим подсети и просчитаем для каждой из них суммарную мощность и максимальный ток. Из ПУЭ сделаем выбор сечения провода для медных проводов и алюминия:

Севкабель допустимые токи для кабелей

  • +7 (812) 320-8720 — Санкт-Петербург

В корзине пусто!

02. ДЛИТЕЛЬНО ДОПУСТИМЫЕ ТОКОВЫЕ НАГРУЗКИ НА СИЛОВЫЕ КАБЕЛИ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ

Длительно допустимые токовые нагрузки на силовые кабели с бумажной изоляцией в алюминиевой или свинцовой оболочке приняты исходя из допустимой температуры нагрева жил кабелей при номинальном напряжении до 3 кВ не более 80 °С, на напряжение 6 кВ не более 65, на 10 не более 60, на 20 и 25 кВ не более 50.Допустимые токовые нагрузки приведены в табл. 29.5—29.10. Они приняты из расчета прокладки кабеля в траншее на глубине 0,7 — 1,0 м не более одного кабеля при температуре земли 15°С и удельном сопротивлении земли 1,2 м * °С/Вт, в воде — при температуре последней 15 °С, в воздухе — внутри и снаружи зданий при любом числе проложенных кабелей и температуре 25 °С.

Читайте так же:
Ток нагрузки по сечению алюминиевого кабеля

При иных условиях прокладки следует вводить поправочный коэффициент для указанных допустимых токов нагрузки, пользуясь табл. 29.11.

Допустимые токовые нагрузки на одиночные силовые кабели, прокладываемые в трубах в земле без искусственной вентиляции, следует выбирать как для тех же кабелей, прокладываемых в воздухе, а при смешанном характере прокладки нагрузки — как для участка с наихудшими тепловыми условиями, если длина кабеля больше 10 м. В таких случаях рекомендуется применять вставки отрезков кабеля большего сечения.

При прокладке нескольких кабелей в земле (в том числе и при прокладке в трубах) длительно допустимые нагрузки необходимо уменьшать, применив коэффициенты, приведенные в табл. 29.12, без учета резервных кабелей. Прокладка нескольких кабелей в земле при расстоянии между ними менее 100 мм не рекомендуется. Допустимые токовые нагрузки на силовые маслонаполненные, газонаполненные и бронированные одножильные кабели и другие кабели новых конструкций устанавливаются разработчиками этих конструкций.

Допустимые длительные токовые нагрузки на кабели, прокладываемые в блоках, определяют по формуле:

где I 0 — ток, определяемый по табл. 29.13;

а — коэффициент, выбираемый по табл. 29.14 в зависимости от сечения кабеля и расположения его в блоке;

b — коэффициент, выбираемый в зависимости от номинального напряжения кабеля; до 3 кВ — 1,09; 6 кВ — 1,05; 10 кВ — 1,0;

с — коэффициент, выбираемый в зависимости от среднесуточной нагрузки всего блока, а именно: 1,07 при отношении S cp,cyт /S ном , равном 0,85, и 1,16 при S ном , равном 0,7.

Нагрузки на кабели, прокладываемые в двух параллельных блоках одинаковой конфигурации, уменьшаются путем умножения на следующие коэффициенты:

Расстояние между блоками, мм50010001500200025003000
Коэффициент0,850,890,910,930,950,96

Таблица 29.5. Токовая нагрузка на силовые кабели с бумажной пропитанной изоляцией в свинцовой или алюминиевой оболочке, прокладываемые в земле

S, мм 2Toк, А
Медные жилыАлюминиевые жилы
1 жила, до 1 кВ2 жилы, до 1 кВ3 жилы4 жилы, до 1 кВ1 жила, до 1 кВ2 жилы, до 1 кВ3 жилы4 жилы, до 1 кВ
до 3 кВ6 кВ10 кВдо 3 кВдо 6 кВдо 10 кВ
680706055
1014010595808511080756065
161751401201059511513511090807590
2523518516013512015018014012510590115
35285225190160150175220175145125115135
50360270235200180215275210180155140165
70440325285245215265340250220190165200
95520380340295265310400290260225205240
120595435390340310350460335300260240270
150675500435390355395520385335300275305
185755490440400460580380340310345
240880570510460675440390355
3001000770
4001220940
50014001080
62515201170
80017001310
Читайте так же:
Управление светом одним выключателем

Таблица 29.6. Токовая нагрузка на силовые кабели с бумажной пропитанной изоляцией в свинцовой или алюминиевой оболочке, прокладываемые в воздухе

Допустимые нагрузки кабельных линий до 35 кВ

.Длительно допустимые токовые нагрузки (I д.д.) для силовых кабелей с бумажной и пластмассовой изоляцией на напряжение до 35 кВ включительно установлены в соответствии с предельными длительно допустимыми рабочими температурами жил кабелей по действующим стандартам и техническим условиям.
Для кабелей, проложенных в грунте, I д.д. приняты исходя из условия прокладки в траншее на глубине 0,7-1,0 м не более одного кабеля при температуре грунта 15°С и удельном тепловом сопротивлении 120°С (Ом/Вт).
Для кабелей, проложенных в воздухе, I д.д. приняты для расстояний в свету между кабелями при прокладке их внутри и вне зданий и в туннелях не менее диаметра кабеля, а в каналах, коробах и шахтах — не менее 50 мм при любом числе проложенных кабелей и температуре воздуха 25°С.
Для кабелей, проложенных в воде, I д.д. приняты для температуры воды 15°С.
Длительно и кратковременно допустимая температура нагрева жил кабелей в нормальном и аварийном режимах работы не должна превышать значений, приведенных в табл. 1.

Номинальное напряжение, кВ

Длительно допустимая температура жил кабелей в нормальном режиме, °С

Кратковременно допустимая температура жил кабелей, °С

В аварийном режиме

В режиме короткого замыкания

С пропитанной бумажной изоляцией

С поливинилхлоридной изоляцией

с
полиэтиленовой изоляцией

С резиновой изоляцией

*) В знаменателе указана температура для кабелей с изоляцией из вулканизированного (сшитого) полиэтилена.

В условиях эксплуатации устанавливаются сезонные (летнюю — по июлю и зимнюю — по декабрю) I д.д для каждой кабельной линии с учетом следующих конкретных условий, в которых они работают:
• температура окружающей среды (земли, воздуха, воды)
• количество рядом проложенных кабелей в земле
• тепловое сопротивление грунта для участка трассы с наихудшими условиями охлаждения
• прокладка кабелей в земле в трубах на длине более 10 м. Количество рядом проложенных кабелей в земле и прокладка кабеля в земле в трубах (более 10 м) наиболее существенно снижают I д.д. кабеля.
При прокладке нескольких кабелей в земле (включая прокладку в трубах) допустимые длительные токи должны быть уменьшены путем введения коэффициентов, приведенных в табл. 2. При этом не должны учитываться резервные кабели.

Поправочные коэффициенты на количество работающих кабелей, лежащих рядом в земле (в трубах или без труб)

Коэффициент при количестве кабелей

При наличии на кабельной трассе участка кабеля в земле в трубах длиной более 10 метров I д.д кабельной линии. проложенной в грунте, определяется по формуле:
I дд = I д.гр. * КТР, где
I дГР — длительно допустимая токовая нагрузка на кабель, проложенный в грунте, А;
КТр — поправочный коэффициент на прокладку кабеля в земле в трубе.

При прокладке кабеля в трубах (полиэтиленовых и асбоцементных) длительно допустимые нагрузки для земли, должны приниматься с уменьшающим коэффициентом К=0,88 для кабелей до 10 кВ с бумажной изоляцией и 0,9 — для одножильных кабелей с изоляцией из сшитого полиэтилена.

При прокладке кабелей длительно допустимые токи должны приниматься для участки трассы с наихудшими условиями охлаждения, если длина его более 10 м (трубы, коллектор с повышенной температурой, пучок кабелей с расстоянием между ними менее 100 мм и т.д.). Рекомендуется применять в указанных случаях кабельные вставки большего сечения.
Приведенные ниже 1 д.д взяты из соответствующих ТУ, ГОСТ и могут несколько отличаться от значении, приведенных в 1ТУЭ 6 изд.

Длительно допустимые нагрузки четырех жильных кабелей 1 кВ с пластмассовой изоляцией.
ТУ16.К71-277-98

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector