Mpk-prometey.ru

МПК Прометей
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сименс Трансформаторы

Сименс Трансформаторы

ООО «Сименс Трансформаторы» — дочернее предприятие компании «Сименс», которое проектирует, производит и обслуживает силовые и тяговые трансформаторы . Завод был открыт в феврале 2012 года в Воронеже; это первый завод, построенный компанией «Сименс» в России после национализации её имущества в 1916 году. [1]

Содержание

Собственники и руководство [ править | править код ]

ООО «Сименс Трансформаторы» является 100 % дочерним предприятием концерна «Сименс АГ» в Германии и работает как полномочный представитель на территории РФ.

Генеральный директор — Иванов Игорь Александрович. [2]

История [ править | править код ]

LLC Siemens Transformers

Соглашение с Администрацией Воронежской области о строительстве завода было заключено в феврале 2009 года во время выездного расширенного заседания правления концерна «Сименс АГ» в Москве. В конце марта 2010 года стороны подписали Дополнительное Соглашение к Соглашению о сотрудничестве в осуществлении инвестиционного проекта по строительству завода силовых трансформаторов. В сентябре 2010 года был заложен первый камень трансформаторного завода на территории индустриального парка «Масловский», г. Воронеж. Официальная церемония открытия производства состоялась 28 февраля 2012 года. «Сименс Трансформаторы» — головное предприятие производственного кластера сектора энергетики Сименс Воронежской области, который включает завод высоковольтного оборудования, а также производство комплектных распределительных устройств c элегазовой изоляцией. (КРУЭ). [3] Завод ООО «Сименс Трансформаторы» имеет общую площадь более 17 000 кв.м., производственную мощность — 10 000 МВА в год.

Продукция [ править | править код ]

Завод производит, реализует и обслуживает силовые трансформаторы и автотрансформаторы мощностью до 250 МВА и классом напряжения до 330 кВ, а также трансформаторы с изоляционной жидкостью MIDEL®7131, трансформаторы для мобильных подстанций, тяговые трансформаторы для локомотивов и высокоскоростных поездов. [4] Осенью 2012 г. завод запустил производство тяговых трансформаторов для локомотивов и высокоскоростных поездов, включая высокоскоростные поезда Velaro Rus «Сапсан», грузовые электровозы 2ЭС10 «Гранит» и пригородные электропоезда Desiro Rus «Ласточка». Завод работает в соответствии с национальными и международными стандартами (ГОСТ, DIN, IEC, ANSI/IEEE и др.). [5]

Деятельность [ править | править код ]

Первой продукцией завода стали силовой трехфазный трансформатор мощностью 63 МВА, классом напряжения 110 кВ для Московской объединенной электросетевой компании (МОЭСК), [6] два силовых трехфазных трансформатора мощностью 20 МВА, классом напряжения 35 кВ для компании «ЛУКОЙЛ», два силовых трехфазных трансформатора мощностью 63 МВА, классом напряжения 220 кВ для подстанции «Юбилейная», а также пять силовых трехфазных трансформаторов мощностью 40 МВА, классом напряжения 110 кВ для нужд казахстанской железной дороги «Казахстан Темир Жолы». В 2013 году был отгружен силовой трансформатор ТРДН-80000/110 для компании ООО «Уральская сталь». [7]

Основные защиты силового трансформатора

Трансформаторы и автотрансформаторы конструктивно весьма надежны благодаря отсутствию у них движущихся или вращающихся частей. Несмотря на это, в процессе эксплуатации возможны и практически имеют место их повреждения и нарушения нормальных режимов работы. Поэтому трансформаторы и автотрансформаторы должны оснащаться соответствующей релейной защитой.

Все основные виды защиты трансформатора можно разделить на две группы:

  • основные
  • резервные.

В соответствии с назначением для защиты трансформаторов (автотрансформаторов) при их повреждениях и сигнализации о нарушении нормальных режимов работы применяются следующие типы защит:

    для защиты при повреждениях обмоток, вводов и ошиновки трансформаторов (автотрансформаторов)
  • Токовая отсечка мгновенного действия для защиты трансфер мотора (автотрансформатора) при повреждениях его ошиновки, вводов и части обмотки со стороны источника питания для защиты при повреждениях внутри бака трансформатора (автотрансформатора), сопровождающихся выделением газа, а также при понижениях уровня масла.
  • Максимальная токовая или максимальная направленная защита или эти же защиты с пуском минимального напряжения для защиты от сверх токов, проходящих через трансформатор (автотрансформатор), при повреждении как самого трансформатора (автотрансформатора), так и других элементов, связанных с ним. Защиты от сверх токов действуют, как правило, с выдержкой времени.
  • Защита от замыканий на корпус
  • Защита от перегрузки, действующая на сигнал, для оповещения дежурного персонала или с действием на отключение на подстанциях без постоянного дежурного персонала.
    Кроме того, в отдельных случаях на трансформаторах (автотрансформаторах) могут устанавливаться и другие виды защиты.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению.

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  • замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • замыкания внутри обмоток трансформатора.
Читайте так же:
Чертеж масляного выключателя вмп 10

Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.

Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.

Из изложенного следует, что защита трансформаторов и автотрансформаторов должна выполнять следующие функции:

  • отключать трансформатор (автотрансформатор) от всех источников питания при его повреждении;
  • отключать трансформатор (автотрансформатор) от поврежденной части установки при прохождении через него сверх тока в случаях повреждения шин или другого оборудования, связанного с трансформатором (автотрансформатором), а также при повреждениях смежного оборудования и отказах его защиты или выключателей;
  • подавать предупредительный сигнал дежурному персоналу подстанции (или электростанции) при перегрузке трансформатора (автотрансформатора), выделении газа из масла, понижении уровня масла, повышении его температуры.

Защита по максимальному току (МТЗ)

Рис.1 схема релейной защиты трансформатора по максимальному току

Защита по максимальному току трансформатора срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле.

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Силовые трансформаторы относительно малой мощности обычно защищают предохранителями со стороны высшего напряжения и предохранителями или автоматами со стороны отходящих линий низшего напряжения. Ток плавкой вставки высоковольтного предохранителя выбирается с учетом отстройки от бросков тока намагничивания при включении силового трансформатора под рабочее напряжение. С учетом этого номинальный ток предохранителя.

Резервная токовая защиты

В качестве резервной защиты трансформаторов тупиковых и отпаечных подстанций используется максимальная токовая защита (МТЗ) с пуском напряжения или без пуска напряжения.

МТЗ устанавливается на каждой стороне трансформатора. Со стороны питания (110кВ,220кВ) МТЗ, как правило, действует с дву­мя выдержками времени.

С меньшей выдержкой времени на отключение ввода 10кВ, а с большей – на отключение трансформатора со всех сторон.

В случае, когда с высокой стороны трансформатора установле­ны короткозамыкатель и отделитель, основные защиты без выдержки времени, а резервные защиты с наибольшей выдержкой времени действуют на включение короткозамыкателя, тем самым создавая искусс­твенное однофазное короткое замыкание, отключаемое защитой пита­ющих линий. В бестоковую паузу (при АПВ питающих линий) произво­дится автоматическое отключение отделителя, после чего повреж­денный трансформатор (автотрансформатор) оказывается полностью отключенным.

Передача команды – импульса на отключение выключателя с пи­тающей стороны линии при повреждении в трансформаторе, не имею­щем выключателя с высокой стороны, может выполняться и без вклю­чения короткозамыкателя (для создания искусственного короткого замыкания).Такая команда может подаваться с помощью телеотключе­ния по высокочастотному каналу.

С целью ближнего резервирования защит трансформатора пре­дусматривается резервная независимая МТЗ-110кВ.

Эта защита является полностью автономной как по цепям то­ка,оперативным цепям, так и по выходным цепям.

Резервная МТЗ-110 с выдержкой времени большей времени сра­батывания основной МТЗ-110 действует на отдельную катушку включения короткозамыкателя или на отдельную катушку отключения выключателя на стороне 110кВ.

С выдержкой времени большей времени действия защит на включение короткозамыкателя УРОКЗ действует на отключение отделителя.

При этом допускается разрешение отделителя во имя спасения самого трансформатора.

Читайте так же:
B500k потенциометр с выключателем

На отпаечных трансформаторах и тупиковых подстанциях 110кВ могут применяться и одноступенчатые токовые защиты нулевой пос­ледовательности, действующие на отключение трансформатора.

На автотрансформаторах транзитных подстанций с высшим напряжением 220-750кВ в качестве резервных защит используются дистанционные защиты (ДЗ) и направленные токовые защиты нулевой последовательности (НТЗНП).

Дистанционные защиты предназначены для отключения междуфаз­ных к.з., а НТЗНП – для отключения одно- и двухфазных к.з. на землю.

Как правило, на высшей и средней стороне АТ устанавливаются двухступенчатая ДЗ и 3-х ступенчатая НТЗНП.

Оперативное ускорение (О/У) первых или вторых ступеней ДЗ и НТЗНП стороны высшего или среднего напряжения АТ ( время 0,3-0,6 сек) вводится оперативным персоналом в случае вывода из работы дифференциальной защиты трансформатора, дифзащиты ошиновки выс­шего напряжения АТ, дифзащиты шин среднего напряжения.

Цель О/У резервных защит АТ – ускорить действие резервных защит АТ при близких внешних к.з. или к.з. в самом АТ.

Следует отметить, что на время ввода О/У резервных защит, возможно их неселективное действие при к.з. в прилегающей сети.

Резервные защиты АТ стороны высшего напряжения действуют с первой (меньшей) выдержкой времени на отключение всех выключате­лей высшего напряжения, а со второй (большей) – на отключение АТ со всех сторон.

На ПС, имеющих на стороне 330кВ схему первичных соединений “полуторная”, резервные защиты стороны 330кВ АТ действуют с первой (меньшей) выдержкой времени на деление шин 330кВ (отключение всех выключателей В12), со вто­рой – на отключение выключателей 330кВ своего АТ, и с третьей (наибольшей) – на отключение своего АТ со всех сторон.

Резервные защиты стороны среднего напряжения АТ при схеме первичных соединений этой стороны “секционированная С.Ш.” дейс­твуют с первой выдержкой времени на отключение ШСВ, со второй – на отключение своей стороны и с третьей – на отключение АТ со всех сторон.

Такое ступенчатое действие резервных защит позволяет сохра­нить в работе те АТ, которые отделяются от места к.з. после де­ления систем шин.

Автоматическое ускорение (А/У) резервных защит при включении выключателя стороны высшего напряжения (А/У – 750,

А/У-330) и при включении выключателей стороны среднего напряже­ния ( А/У-220, А/У-110) действует на отключение выключателя, включаемого на к.з. ключом управления или устройством ТАПВ.

При этом на каждой стороне АТ ускоряются до 0,4-0,5 сек I и II ступени ДЗ и II ненаправленная ТЗНП.

Индивидуальная защита от непереключения фаз выключате­лей стороны среднего и высшего напряжения АТ

Защита выполняется только на выключателях с пофазным управ­лением.

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при включении выключателя одной или двумя фазами.

Защита действует на отключение трех фаз включаемого выклю­чателя.

Выдержка времени защиты (0,15 ¶ 0,25 сек) выбрана по усло­вию отстройки от разновременности включения фаз выключателя.

Защита от неполнофазного режима на стороне 330 кВ (750) АТ (ЗНР-330)

Назначение защиты – ликвидация неполнофазного режима, воз­никающего при неполнофазном отключении одного выключателя 330 кВ АТ и трехфазном отключении второго выключателя 330 кВ АТ.

Защита, как правило, действует на отключение АТ со всех сторон.

Выдержка времени ЗНР-330 на 0,3 сек выше выдержки времени индивидуальной защиты от непереключения фаз выключателя.

На АТ-750кВ для контроля состояния изо­ляции вводов 750кВ АТ применяется устройство КИВ-750.

Принцип действия устройства – измерение геометрической сум­мы токов, протекающих под воздействием рабочего напряжения через изоляцию вводов 750 кВ трех фаз.

При исправной изоляции геометрическая сумма токов, входящих в реле типа КИВ, близка к нулю. В случае частичного повреждения изоляции ввода одной из фаз появляется ток небаланса, который фиксируется защитой.

Устройство типа КИВ имеет измерительный элемент для опера­тивного контроля и отключающий элемент.

Отключающий элемент действует на отключение АТ со всех сто­рон.

Защита от перегрузки

В качестве такой защиты устанавливается токовая защита, действующая с выдержкой времени на сигнал в случае перегрузки по току любой обмотки трансформатора.

Видео: Релейная защита. Вводная лекция

Что такое релейная защита, для чего она нужна. Основные характеристики, которыми должна обладать релейная защита.

SIPROTEC Siemens релейная защита и автоматика описание

SIPROTEC Siemens уже десятки лет утверждается на энергети- ческом рынке в качестве эффективного и полного семейства цифровых устройств релейной защиты и периферийных устройств производства компании Siemens.

Читайте так же:
Руководство по капитальному ремонту масляного выключателя вмп 10

SIPROTEC Siemens релейная защита и автоматика

SIPROTEC Siemens релейная защита и автоматика

Устройства релейной защиты SIPROTEC Siemens можно использовать абсолютно в любых сетях среднего и высокого напряжения.

Системы SIPROTEC Siemens позволят Вам твердо и уверенно держать под контролем свои установки и иметь прочную основу для эффективного решения любых задач в современных интеллектуальных сетях. Для решения разнообразных задач Вы сможете произвольно комбинировать устройства различных серий SIPROTEC Siemens — системы SIPROTEC Siemens универсальны, открыты и перспективны.

Компания Siemens, уже более 100 лет являющаяся движителем инноваций и лидером в области техники релейной защиты, поможет Вам эксплуатировать энергосети разумно, экологично, надежно, эффективно и экономично.

Полная интеграция функций управления и защиты во всех устройствах SIPROTEC Siemens была инновационным шагом в 90-е годы.

Какую пользу принесет Вам этот опыт?
— проверенные временем комплексные решения
— оптимальное взаимодействие компонентов системы
— высочайшее качество оборудования и программного обеспечения
— исключительное удобство пользования устройствами и программными инструментами
— беспроблемный обмен данными между приложениями
— максимальная унификация продуктов и систем
— простота управления

7SJ61 Siprotec4 Siemens реле максимальной токовой защиты купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SJ61 Siprotec4 Siemens реле максимальной токовой защиты

7SJ61 Siprotec4 Siemens можно использовать для защиты линий в сетях высокого и среднего напряжения.

66MD662 6MD664 Siprotec4 Siemens управление присоединением высокого напряжения купить наличие цена ЭЛЕКТРОЩИТ СПБ

66MD662 6MD664 Siprotec4 Siemens управление присоединением высокого напряжения

6MD662 6MD664 Siprotec4 Siemens входящее в линейку устройств SIPROTEC4 — это устройство управления присоединением высокого напряжения.

6MD63 Siprotec 4 Siemens устройство управления присоединением купить наличие цена ЭЛЕКТРОЩИТ СПБ

6MD63 Siprotec 4 Siemens устройство управления присоединением

6MD63 Siprotec 4 Siemens устройство управления присоединением это гибкое, простое в использовании устройство управления.

6MD61 Siprotec 4 Siemens блок входов выходов купить наличие цена ЭЛЕКТРОЩИТ СПБ

6MD61 Siprotec 4 Siemens блок входов выходов

6MD61 Siprotec 4 Siemens блок входов выходов предоставляет собой простой и легкий путь для расширения.

7SJ46 Siprotec Easy Siemens реле максимальной токовой защиты МТЗ купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SJ46 Siprotec Easy Siemens реле максимальной токовой защиты МТЗ

7SJ46 Siprotec Easy Siemens реле максимальной токовой защиты МТЗ.

7SJ45 Siprotec Easy Siemens реле максимальной токовой защиты МТЗ купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SJ45 Siprotec Easy Siemens реле максимальной токовой защиты МТЗ

7SJ45 Siprotec Easy Siemens реле максимальной токовой защиты МТЗ предназначено.

7SD80 Siprotec Compact Siemens Дифференциальная защита линий купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SD80 Siprotec Compact Siemens Дифференциальная защита линий

7SD80 Siprotec Compact Siemens Дифференциальная защита линий.

7SD52x-7SD53x Siprotec 4 Siemens реле дифференциальной защиты линии с функцией дистанционной защиты купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SD52x-7SD53x Siprotec 4 Siemens реле дифференциальной защиты линии с функцией дистанционной защиты

7SD52x-7SD53x Siprotec 4 Siemens реле дифференциальной защиты линии с функцией дистанционной защиты.

7SD610 Siprotec 4 Siemens Реле дифференциальной защиты для одноцепной линии купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SD610 Siprotec 4 Siemens Реле дифференциальной защиты для одноцепной линии

7SD610 – это реле дифференциальной защиты, объединяющие все функции.

7SD600 Siprotec 4 Siemens Реле дифференциальной токовой защиты линии с двухпроводными каналами связи купить наличие цена ЭЛЕКТРОЩИТ СПБ

7SD600 Siprotec 4 Siemens Реле дифференциальной токовой защиты линии с двухпроводными каналами связи

7SD600 Siprotec 4 Siemens это легко настраиваемое цифровое реле.

7VH600 Siprotec 4 Siemens Высокоомная дифференциальная защита купить наличие цена ЭЛЕКТРОЩИТ СПБ

7VH600 Siprotec 4 Siemens Высокоомная дифференциальная защита

Реле 7VH600 Siprotec 4 Siemens спроектировано для быстрой и селективной дифференциальной защиты.

Термозащита электродвигателей

Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

  • Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.
  • При высокой температуре окружающей среды.
  • Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.
  • Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

  • Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
  • Число уровней и тип действия (2-я цифра)
  • Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

Только медленно (постоянная перегрузка)

1 уровень при отключении

2 уровня при аварийном сигнале и отключении

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

Читайте так же:
Установка электрических выключателей для скрытой проводки

2 уровня при аварийном сигнале и отключении

Только быстро (блокировка)

1 уровень при отключении

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.

Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).

Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

Читайте так же:
Сделать своими руками доску для выключателей для ребенка

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.

По сравнению с PTO терморезисторы имеют следующие преимущества:

  • Более быстрое срабатывание благодаря меньшему объёму и массе
  • Лучше контакт с обмоткой электродвигателя
  • Датчики устанавливаются на каждой фазе
  • Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111

Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector