Mpk-prometey.ru

МПК Прометей
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

5 вопросов о светодиодных драйверах и блоках питания

5 вопросов о светодиодных драйверах и блоках питания

Это импульсный источник постоянного электрического тока для светодиодного светильника. Самыми качественными считаются двухкаскадные драйверы с коэффициентом мощности свыше 0,92 и пульсацией света не более 1%. Но такие схемы дороги, поэтому их используют далеко не для всех светильников.
Драйвер может представлять собой устройство в изолированном корпусе из пластика с отверстиями для монтажа или встраиваемую печатную плату с системой компонентов.

Чем драйвер отличается от блока питания?

светодиодный драйверОба устройства предназначены для питания электронных приборов, которые нельзя подключать непосредственно к сети переменного тока 220 V. Стандартный блок питания создает на выходе только стабилизированное напряжение 12 V, которое не зависит от скачков входного напряжения и перепадов питающего тока. Драйверами называют специфические источники питания, которые стабилизируют на выходе ток и применяются только для светодиодов. Блоки питания также используют для диодной светотехники. Они бывают трансформаторными и импульсными. Первые просты, недороги, но слишком много весят и отличаются небольшим КПД. Вторые в несколько раз меньше и легче, однако не менее чувствительны к перегрузкам и на холостом ходу так же часто выходят из строя.

Каковы преимущества светодиодных драйверов с высоким КПД?

Во-первых, они максимально экономят электроэнергию, расходуя не более 10 % питания при работе. Во-вторых, в 2-3 раза дольше служат, так как низкие потери мощности способствуют снижению температуры при работе прибора. Отсутствие перегрева положительно сказывается на состоянии компонентов прибора.

Как рассчитывать мощность источников питания?

Для блока питания этот показатель не должен превышать общую сумму подключаемых к нему светильников. И к ней необходимо добавить 20-30 % для запаса. Драйвер же должен соответствовать не только мощности подключаемых светодиодов, но и токам, поэтому подбирать его желательно со специалистом. Неправильный выбор стабилизатора тока может привести к тому, что светодиодный светильник сгорит или будет слишком тускло светить.

Что такое драйвер с функцией диммирования?

Это стабилизатор тока, который помогает управлять интенсивностью света, производимого светодиодной лампой. Драйверы с функцией ШИМ-диммирования поддерживают управление яркостью света от 0 до 100 %. Аналоговые приборы меняют ток на светодиоде пропорционально изменениям управляющего напряжения. Они обеспечивают снижение интенсивности освещения минимум до 10 %.

Драйвер – важнейшая деталь устройства светодиодного светильника. От него во многом зависит срок службы и качество освещения, создаваемого полупроводниковыми осветительными приборами. Если производитель не сэкономил на этом устройстве, его продукция стоит дороже. Но служит дольше и работает лучше.

Белый светодиод в модернизированной схеме драйвера

Белый светодиод-01

Белый светодиод на полевом транзисторе в усовершенствованной схеме драйвера

Белый светодиод и драйвер управления. Соединив светодиод и MOSFET обедненного типа, можно создать эффективный управляемый драйвер на основе источника тока.

Ярким светодиодам видимого диапазона нужен источник постоянного тока. В описанной ниже простой схеме такого источника, не создающей радиопомех, используются преимущества, предоставляемые новыми нормально открытыми мощными MOSFET обедненного типа.

Исторически простейшим способом управления такой нагрузкой, как белый светодиод, является использование постоянного или переменного сопротивления между источником питания и нагрузкой (Рисунок 1).

Белый светодиод-1

Достоинством этой схемы является только низкая стоимость, поскольку ток не остается постоянным, а зависит от напряжения питания и изменяется с повышением температуры при увеличении токовой нагрузки. Низкий КПД можно улучшить, заменив пассивный резистор активным компонентом или схемой, сопротивление которой автоматически регулируется, чтобы поддерживать определенное значение тока, даже при изменениях напряжения питания и/или нагрузки.

Возможности источников постоянного тока, построенных с использованием нормально открытых полевых транзисторов с управляющим р-n переходом или обедненных MOSFET, ограничены очень низкими уровнями мощности. Эти устройства управляются напряжением, а не током, как в старых транзисторах с биполярным переходом. Если малосигнальные полевые транзисторы с р-n переходом доступны с каналами как р, так и n типов, то новые обедненные MOSFET, способные управлять большими токами, необходимыми для синих и белых светодиодов, в настоящее время ограничены n-типами.

Белый светодиод-2

В традиционных схемах источников тока на обедненных MOSFET (Рисунок 2) используются только МОП-транзистор и резистор (постоянный или переменный). Ток, проходящий через МОП-транзистор, создает падение напряжения на резисторе, сопротивление которого подобрано таким, чтобы это напряжение превышало напряжение отсечки на величину, необходимую для обеспечения требуемого постоянного тока IO. Двухвыводной источник постоянного тока позволяет произвольно подключать нагрузку либо к стоку, либо, чаще всего, как показано на рисунке, к выводу затвора.

MOSFET обедненного типа IXTP3N50D2, выпускаемый компанией IXYS, управляет 5-ваттным светодиодом LZI-00NW05 компании LEDengin (190 лм при токе 1 А). Для схемы требуется резистор (Rcc) от 2 до 10 Ом мощностью от 1 до 2 Вт. Для достижения максимального КПД напряжение питания должно быть как можно ближе к прямому напряжению светодиода VF.

Хотя традиционный источник постоянного тока компактен и эффективен, он обеспечивает лишь ограниченный диапазон управления током с помощью переменного резистора RCC и обычно требует мощного постоянного резистора, индивидуально подобранного для каждого МОП-транзистора. Это связано с тем, что напряжение отсечки (VGS(OFF)), необходимое для управления МОП-транзистором, имеет большой разброс от устройства к устройству, как и прямое напряжение VF светодиода. Это делает схему непрактичной для массового производства.

Читайте так же:
Схема подключения выключателя с подсветкой unica

Включение потенциометра

Новая схема позволяет управлять напряжением отсечки (VGS(OFF)) MOSFET обедненного типа. В ней мощный последовательный реостат Rcc стандартной схемы заменен светодиодом, а высокоомный потенциометр (делитель напряжения) включен параллельно светодиоду (Рисунок 3).

В представленной на этой схеме комбинации обедненного MOSFET и светодиода полевой транзистор генерирует ток, управляемый напряжением, в то время как светодиод, подключенный непосредственно к стоку Q1, генерирует напряжение, зависящее от тока. Таким образом, максимальный ток проходит через белый светодиод тогда, когда движок потенциометра находится возле вывода Rcc, подключенного к истоку транзистора, и достигает минимального значения, определяемого прямым напряжением светодиода и напряжением VGS(OFF) транзистора, когда движок перемещается к заземленному выводу потенциометра.

Чтобы при крайнем положении движка потенциометра исключить возможность протекания через светодиод слишком большого тока, способного вывести схему из строя, может потребоваться дополнительное небольшое сопротивление, включенное между затвором и Rcc поскольку прямое соединение истока и затвора полностью откроет MOSFET. Прямое напряжение VF одиночного белого светодиода находится в диапазоне от 3.6 до 3.8 В, а напряжение отсечки VGS(OFF) транзистора IXTP3N50D2 имеет разброс от -2 до -4 В.

Эта схема обеспечивает удобный способ регулирования в широком диапазоне яркости свечения светодиода любого цвета без необходимости учета характеристик конкретного МОП-транзистора или светодиода. Значения напряжений также показывают, что величины VF одного белого светодиода недостаточно для того, чтобы в крайнем положении движка потенциометра управляющий МОП-транзистор был полностью закрыт (Рисунок4).

Диапазон напряжений

Если же требуется диапазон управления транзистором от полного его включения до полного выключения, простое решение заключается в последовательном соединении двух светодиодов. Такая схема работает в устройстве автора при напряжениях питания в диапазоне от 2.8 до 12 В, и будет работать также до максимально допустимого напряжения полевого транзистора, однако для этого потребуется радиатор.

Лучшим подходом было бы увеличить количество последовательных светодиодов, чтобы суммарное напряжение на них соответствовало напряжению питания с точки зрения рассеиваемого тепла и КПД. Например, 500-вольтовый 3-амперный MOSFET IXTP3N50D2 может в автономном приложении управлять тремя параллельными цепочками из ста 5-ваттных белых светодиодов.

Для установки напряжения на затворе обедненного MOSFET имеет значение не полное сопротивление потенциометра, а только отношение сопротивлений выше и ниже движка, умноженное на VF белого светодиода. Полное сопротивление потенциометра определяет лишь потребляемый им ток и равно произведению n на прямое напряжение светодиода, деленному на сопротивление резистора Rcc включенного параллельно белому светодиоду (где n — количество светодиодов в цепочке).

Для одиночного светодиода ток, идущий через 100-килоомный потенциометр, включенный параллельно светодиоду, составляет всего 0.037 мА (0.14 мВт), поэтому подойдет любой подстроечный резистор, что на порядки лучше, чем использование последовательного реостата. Кроме того, поскольку MOSFET управляется напряжением, сопротивление потенциометра может в разы превышать это значение и при этом соответствовать характеристикам транзистора, что позволяет дополнительно снизить потери мощности в цепи управления до ничтожных значений.

При последовательном соединении двух и более светодиодов сопротивление потенциометра может быть пропорционально увеличено до 200 кОм (или более), чтобы сохранить тот же уровень энергопотребления.

Кроме того, поскольку схема не содержит реактивных или переключающих компонентов, она имеет коэффициент мощности, равный единице. Она также не создает электромагнитных помех, и поэтому не попадает в сферу регулирования Части 15 правил FCC, регламентирующих уровни ЭМИ.

Светодиод в импульсном режиме

В статье "ИК светодиод в предельных режимах работы" описана работа конкретной модели светодиода. Но все светодиоды способны работать в импульсном режиме. В связи с тем что статья вызвала Ваш интерес, который по не вполне понятным причинам замкнулся на описанном ИК светодиоде АЛ106, я решил написать эту статью расширив ее на применение современных мощных светодиодов.

Области применения современных мощных светодиодов

Светодиоды большой мощности выпускаются в нескольких спектральных диапазонах со все более широкой номенклатуре мощности. Они все больше применяются в нашей жизни, от различных сигнальных устройств (в том числе и в автотехнике), технических подсветок до местного освещения и освещения открытых пространств.

В этих случаях условия применения полностью соответствуют рекомендациям производителей.

Для их питания применяются специальные источники питания (драйверы), которые позволяют преобразовать напряжение питающей сети переменного тока в низкое напряжения постоянного тока.

Импульсный режим режим работы мощных светодиодов

Для некоторых применений требуется использование светодиодов в импульсном режиме. Это:

  • Стробоскопы,
  • Датчики охранных систем,
  • Специальные осветители,
  • Импульсных осветителях (вспышках).

Импульсный режим (1, 2), позволяет выделить необходимый импульсный сигнал на фоне внешних засветок. Кроме того импульсный режим позволяет светодиоду выдать большую световую мощность или световой поток, чем в непрерывном режиме при той же мощностью тепловыделения.

  1. Импульсные режимы работы источников света применяются в стробоскопических системах для подсветки при съемках и наблюдении быстрых циклических процессов.
  2. В охранных системах, для увеличения их помехозащищенности в условиях внешних засветок и увеличения дальности работы.
  3. В специальных осветителях для увеличения световой мощность на объекте наблюдаемом с помощью оптико-электронных устройств и их освещения синхронного с частотой работы съемочного оборудования (в том числе и ИК мощных осветителей).
  4. В импульсных осветителях для фотосъемки (фото вспышках) для получения многократного превышения световой мощности на снимаемом удаленном объекте.
Читайте так же:
T315hw07 v 8 уменьшить ток подсветки

( В фотовспышках на светодиодах работающих в импульсном режиме возможно применение применение оптического формирование светового потока на удаленном объекте )

Особенности работы светодиода в импульсном режиме

В связи с тем, что наибольшее тепловыделение на любом коммутирующем электронном приборе работающем в импульсном режиме происходит на фронтах питающего тока, для заметного выигрыша при переходе в этот режим необходимо максимально снижать время переключения.

Не все светодиоды удовлетворяют этому требованию, прежде всего потому что применяемое параллельное их соединение приводит к суммированию их и так не малой емкости. А для питания устройств с собственной большой емкостью необходимо применять специальные схемы, способные работать на высокие емкости нагрузки . Поэтому выбирая светодиод для эксперимента с повышенным током питания в импульсном режиме необходимо проверить время переключения.

При большом времени переключения падает КПД системы СД + ключ управления (может достигать 50%), получаем дополнительное тепловыделение на управляющем ключе.

для надежной работы светодиода в импульсном режиме должно выполняться соотношение :
P ср/ Q < P и
импульсная мощность не должна превышать допустимую среднюю для данного светодиода, умноженную на скважность импульсов.
Или
для одиночного импульса
температура перехода светодиода (к окончанию импульса тока) не должна превышать предельную, указанную для данной модели в его документации.
Применение мощного светодиода KPXX-080-5 в импульсном режиме

Рассмотрим применение мощного светодиода KPXX-080-5 (5Вт) в импульсном режиме. В паспортных характеристиках указывается, что данный светодиод работает в импульсном режиме при импульсном прямом токе 2000 мА и скважности 1/10 на частота 1 кГц. Его характеристики:

Абсолютные максимальные значения. Таблица 1.

ПараметрМаксимальное значение
Постоянный прямой ток1500 мА
Импульсный прямой ток
(Скважность Q = 1/10, частота 1 кГц)
2000 мА
Среднее значение прямого тока1500 мА
Чувствительность к электростатическому разряду±16000 В
Температура p-n перехода135°С
Температура алюминиевой печатной платы105°С
Диапазон рабочих температур-40°С / +100°С
Тепловыделение Вт< 6,8

Электрические характеристики (IF=1500 мА, Tj=25°C). Таблица 2.

ЦветПрямое напряжение
(В)
Динамическое сопротивление (Ом)Температурный коэффициент VF (мВ/°С)Тепловое сопротивление переход-корпус
(°С/Вт)
Световой поток
(Лм)
Доминирующая длина волны (нм) / Цветовая температура (К)
Мин.Тип.Макс.
Белый3.23.84.51.0-2103005500K
Белый теплый3.23.84.51.0-2102803300K
Синий3.23.84.51.0-21068468

Как было написано выше, одним из ограничений рабочего тока светодиода является ограничение его мощности тепловыделения на уровне — P ср < P и* Q , что приводит к превышению допустимой температуры перехода. Для данного светодиода в связи с его большим тепловым сопротивлением (10°С/Вт) и одновременного с ростом тока — ростом напряжения на светодиоде предельная мощность достигается уже при токе 2 А. Прирост светового потока при этом токе может достигать 30%. Но экспериментальная оптимизация режима (отбор экземпляра, подбор максимального тока при соблюдении указанных выше ограничений, усиление охлаждения с помощью дополнительного теплоотвода) может позволить поднять рабочий ток до 3А и соответственно световой поток в 2 раза.

Можно предположить, что в режиме одиночного импульса (фото-вспышка) световой поток может достигать 600 — 1000 Лм, а при принятии оговоренных выше дополнительных мер возможно и до 3000 Лм.

Предельные характеристики мощных светодиодов на начало 2010 года

Не вдаваясь в конкретные конструкции светодиодов существующих в настоящее время можно отметить:

ПараметрТип светодиодаВеличина
Тепловое сопротивлениеSST-800,5 — 0,64 °С/Вт
МощностьARPL — 30W30 W
Световой потокSST-80до 2250 Лм
ARPL — 30Wдо 1100 Лм
СветоотдачаSST-80до 100 Лм/Вт
ARPL — 30Wдо 36 Лм/Вт
Напряжение питанияARPL — 30Wдо 24 Вт

На рисунке 1 схематически изображена конструкция светодиодов SST-80 :

Необходимой принадлежностью мощных светодиодов является теплоотвод, поскольку тепловыделение достигает 40 Вт на кристалл (светодиод).

Другие характеристики светодиода приведены на рис. 2 — 5.

Заключение

Главным недостатком светодиодов является достаточно высокое падение напряжения на светодиоде, которое определяется физикой генерации света в p-n переходе любого светодиода. Для видимого света это напряжение составляет (для одного светодиода) около 3,2 — 3,8 В, и с ростом тока растет (см. рис. 3.). Это определяет высокое тепловыделение на светодиоде. Это с ростом мощности светодиода приведет к увеличению размера светильника.

Например — при мощности тепловыделения 10 Вт для отвода выделяемого тепла требуется порядка 200 см 2 площади теплоотвода, при естественном охлаждении.

Читайте так же:
Расчетный ток кабелей с медными

Применение низкого напряжения и достаточно большого тока для питания мощного светодиода требует применение специального источника питания который еще увеличивает размеры осветительного устройства с применением мощного светодиода и одновременно снижает его КПД. И увеличивает тепловыделение.

Светодиодный драйвер: принцип работы и правила подбора

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

КПД импульсного драйвера для светодиодов достигает 95%

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Читайте так же:
Tp ms3463s pa583 уменьшить ток подсветки

Светодиодный драйвер без корпуса

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Устройство светодиодов

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Читайте так же:
Ток белого светодиода 5мм

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

Dip светодиоды

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.

  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

Полярность моно определить несколькими способами:

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

Когда нужно использовать токоограничивающий резистор:

  • когда вопрос эффективности схемы не является основным – например, индикация;
  • лабораторные исследования.

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector