Mpk-prometey.ru

МПК Прометей
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лаб. раб. по ЭЧС и ПС / Лаб_раб №2 Конструкции вакуумных и элегазовых выключателей

Лаб. раб. по ЭЧС и ПС / Лаб_раб №2 Конструкции вакуумных и элегазовых выключателей

Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного при атмосферном давлении. Это свойство используется в вакуумных выключателях. Вакуумные выключатели 6—10 кВ широко применяются для замены маломасляных и электромагнитных выключателей в комплектных распределительных устройствах (КРУ).

1.1 Выключатель ВБП-С-10-31,5/1600

Быстродействующий вакуумный выключатель ВБП-С-10-31,5/1600 устанавливается в секционных и вводных ячейках КРУ 10 кВ (Рис. 1). Он состоит из трех полюсов по числу фаз и общим приводом на три полюса.

Рис. 1. Выключатель вакуумный ВБП-С-10-31,5/1600 УЗ:

1 — выкатная тележка; 2 — рама; 3 — изоляционные тяги; 4 — узел поджатия; 5 — токовыводы; 6 — изоляционный каркас; 7 — вакуумная дугогасительная камера (КДВ); 8 — пружинно-моторный привод; 9 — кулачковый вал привода; 10 — кнопка отключения; 11 — блок защелок; 12 — блок сигнализации; 13 — отключающая пружина; 14— буфер; 15— вал выключателя; 16— индукционно-динамическое устройство управления (ИДУУ)

Его номинальный ток составляет 1600 А, а номинальный ток отключения – 31,5 кА. В КРУ он устанавливается на выкатной тележке 1. Дугогасительная камера 7 типа КДВ-10 укреплена на токовыводах 5 в изоляционном каркасе 6 и системой рычагов связана с приводом. При включении сначала происходит заводка пружинно-моторного привода до положения «Готов». После этого подается сигнал на включение на ИДУУ (индукционно-динамическое устройство управления), которое, разряжаясь, сбивает удерживающую защелку на приводе, пружины поворачивают кулачковый вал 9, который воздействует на рычаг вала выключателя. Вал, поворачиваясь, через систему рычагов и изоляционные тяги 3 воздействует на подвижный контакт КДВ, выключатель включается.

При этом одновременно сжимается и ставится на механическую защелку пружина отключения 13. Отключение производится кнопкой отключения 10, которая выбивает удерживающую защелку, а отключающая пружина 13 через систему рычагов возвращает подвижный контакт камеры в отключенное состояние. Управление выключателем может осуществляться вручную или дистанционно.

Выключатель имеет полное время отключения 0,04 с, время включения 0,03 с.

Важнейшим элементом конструкции вакуумного выключателя является дугогасительная камера с контактами. Здесь применена камера типа КДВ-10-1600-20 (Рис.2).

Рис. 2. Вакуумная дугогасительная камера КДВ-10-1600-20:

1 — рабочие контакты; 2 — дугогасительные контакты; 3 — зазоры; 4, 5 — токоведущие стержни; 6 — верхний фланец; 7 — сильфон; 8, 9 — экраны; 10 — керамический корпус; 11 — крепежное кольцо; 12 — корпус

Рабочие контакты 1 в камере меют вид полных усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, заставляющее перемещаться дугу через зазоры 3 на дугогасительные контакты 2. Материал контактов подобран так, чтобы уменьшить количество испаряющегося металла. Вследствие глубокого вакуума (10 -4 —10 -6 ) происходит быстрая диффузия заряженных частиц в окружающее пространство, и при первом переходе тока через нуль дуга гаснет.

Подвод тока к контактам осуществляется с помощью медных стержней 4 и 5. Подвижный контакт крепится к верхнему фланцу 6 с помощью сильфона 7 из нержавеющей стали. Металлические экраны 8 и 9 служат для выравнивания электрического поля и для защиты керамического корпуса 10 от напыления паров металла, образующихся при горении дуги. Экран 8 крепится к корпусу камеры с помощью кольца 11. Поступательное движение к верхнему контакту обеспечивается корпусом 12. Ход подвижного контакта составляет 12 мм.

1.2 Выключатель ВВ-TEL-10-1000

Общий вид и габаритные размеры вакуумного выключателя ВВ-TEL-10-1000 выпускаемого производственным объединением «Таврида-электрик» показаны на рис.3.

Рис.3 Общий вид выключателя ВВ-TEL-10-1000:

1,2— подключение главных цепей; 3 — кнопка ручного отключения; 4 — заземление; 5 — подключение вторичных цепей.

Выключатель состоит из трех одинаковых полюсов, установленных на общем основании. Каждый полюс включает или отключает цепь соответствующей фазы.

Особенностью данного выключателя является наличие магнитной защелки, удерживающей в сжатом состоянии отключающую пружину до подачи команды на отключение.

На рис.4 показан разрез конструктивной схемы одного полюса выключателя. В разомкнутом положении контакты выключателя 1 и 3 удерживаются отключающей пружиной 9 через тяговый изолятор 5. При подаче сигнала «Вкл» подается питание в катушку электромагнита 10; якорь 8, сжимая отключающую пружину, перемещается вверх вместе стяговым изолятором и подвижным контактом 3, который замыкается с неподвижным контактом 1. В это время кольцевой магнит 7 запасает магнитную энергию, необходимую для удержания выключателя во включенном положении, а катушка 10 постепенно обесточивается, после чего привод оказывается подготовленным к операции отключения.

Во включенном положении выключатель удерживается силой магнитного притяжения якоря 8 к кольцевому магниту 7 так называемой «магнитной защелкой», при этом энергии из внешней цепи не потребляется.

При подаче сигнала «Откл» блок управления подает импульс противоположного направления в катушку 10, размагничивая магнит и снимая привод с магнитной защелки. Под действием пружин 6 и 9 якорь 8 перемещается вниз вместе с тяговым изолятором 5 и подвижным контактом 3, выключатель отключается.

Рис. 4. Разрез полюса выключателья BB-TEL-10-1000:

1 — неподвижный контакт ВДК; 2 — вакуумная камера (ВДК); 3 — подвижный контакт ВДК; 4 — гибкий токосъем; 5 — тяговый изолятор; 6 — пружина поджатая; 7 — кольцевой магнит; 8 — якорь; 9— отключающая пружина; 10 — катушка; 11 — вал; 12 — постоянный магнит; 13 — герконы (контакты для внешних вспомогательных цепей)

1.3 Достоинства вакуумных выключателей: простота конструкции, высокая степень надежности, высокая коммутационная износостойкость, малые размеры, пожаро- и взрывобезопасность, отсутствие загрязнения окружающей среды, малые эксплуатационные расходы.

1.4 Недостаток вакуумных выключателей — возможность коммутационных перенапряжений при отключении небольших индукционных токов.

2. Элегазовые выключатели

Элегаз SF6 представляет собой инертный газ, плотность которого в 5 раз превышает плотность воздуха. Электрическая прочность элегаза в 2 — 3 раза выше прочности воздуха. Элегазовый выключатель представляет собой замкнутую систему без выброса газа наружу. Различают колонковые элегазовые выключатели и баковые.

В баковых выключателях гашение дуги может осуществляется за счет вращения электрической дуги в элегазе с помощью магнитного поля, созданного отключаемым током.

В колонковых элегазовых выключателях применяются автокомпрессионные дугогасительные устройства (рис. 5). При отключении цилиндр 4 вместе с контактом 3 перемещается вниз, образуется разрыв между подвижным 3 и неподвижным 1 контактами и загорается дуга. Поршень 5 остается неподвижным, поэтому При движении цилиндра вниз элегаз над поршнем сжимается, создается дутье в объем камеры и полый контакт 1, столб дуги интенсивно охлаждается, и она гаснет. При включении цилиндр 4 перемещается вверх, контакт 1 оказывается в верхней камере цилиндра и цепь замыкается.

Читайте так же:
Щиток питания с автоматическими выключателями

Рис. 5. Схема дугогасительного устройства элегазового

выключателя с односторонним дутьем:1 — неподвижный полый контакт; 2 —сопло из фторопласта; 3 — подвижный контакт; 4 — подвижный цилиндр; 5— поршень

Более эффективным является двустороннее дутье, именно такие дугогасительные камеры применяются в современных элегазовых выключателях, построенных на модульном принципе. Так, в выключателях на 110 кВ— один дугогасительный модуль, на 220 кВ — два, на 500 кВ — четыре. Соответственно меняется изоляция относительно земли.

2.1 Выключатель ВГУ-220-45/3150У1.

На рис. 6 показан выключатель ВГУ-220-45/3150У1 (UHM = = 220кВ, Iоткл.ном=45 кА, IНОМ=3150 А, У — климат умеренный, 1 – установка открытая). Выключатель имеет три полюса. Полюс имеет Y-образную компоновку. В каждом полюсе имеется две последовательно соединенные дугогасительные комеры с контактами. Параллельно контактам камер включены конденсаторы 5 емкостного делителя. Емкостные делители обеспечивают равномерное распределение напряжения между разрывами полюса. Дугогасительные камеры и конденсаторы представляют собой дугогасительный модуль 1 полюса. Этот модуль крепится на опорной изоляционной колонке 2. В каждом полюсе имеется шкаф управления 3. На все три полюса имеется распределительный шкаф 4. Распределительный шкаф предназначен для пневматической и электрической связи трех полюсов выключателя.

Отключение осуществляется пневматическим приводом, включение — пружинами, которые заводятся при отключении.

Рис. 6. Выключатель элегазовый колонковый-220-45/3150:

1 — модуль дугогасительный; 2 — колонка опорная; 3 — шкаф управления с приводом; 4 — шкаф распределительный; 5 — конденсаторы (емкостные делители)

2.1 Выключатель ВГБЭ-35-12,5/630.

На рис.7 представлен баковый выключатель ВГБЭ-35-12,5/630. Баковые выключатели на 110 кВ и более имеют три полюса. Каждый полюс выполняют в отдельном баке. Этот выключатель имеет номинальное напряжение 35 кВ, все три его фазы размещены в одном баке 3 с контактной дугогасительной системой. Номинальный ток отключения выключателя составляет 12,5 кА, а номинальный ток – 600 А. Номинальное давление элегаза в баке должно быть 0,45 МПа. При снижении давления характеристики выключателя не будут обеспечены. Для сигнализации о снижении давления в конструкции предусмотрен сигнализатор давления 6. Гашение дуги осуществляется за счет вращения электрической дуги в элегазе с помощью магнитного поля, созданного отключаемым током. Над баком возвышаются высоковольтные вводы 1 , в нижней части которых расположены встроенные трансформаторы тока 2 , что упрощает конструкцию распределительных устройств. Вводов всего шесть, по два на каждую фазу.

Привод выключателя электромагнитный, он расположен в шкафу 9. При низких температурах элегаз может конденсироваться, чтобы избежать этого, предусмотрен подогрев 8. Для замены элегаза имеется клапан 5.

Рис. 7. Выключатель элегазовый баковый ВГБЭ-35:

1 — ввод; 2 — трансформатор тока; 3 — бак с контактной и дугогасительной системами; 4 — коробка механизма; 5 — клапан; 6 — сигнализатор давления; 7— клеммная коробка; 8 — подогрев; 9 — шкаф с приводом

Достоинства элегазовых выключателей: пожаро- и взрывобезопасность, быстрота действия, высокая отключающая способность, малый износ дугогасительных контактов, возможность создания серий с унифицированными узлами (модулями), пригодность для наружной и внутренней установки.

Недостатки: необходимость специальных устройств для наполнения, перекачки и очистки SF6, относительно высокая стоимость SF6.

Принцип работы и конструкция вакуумного выключателя BB-TEL

Выпускаемые в настоящее время на Украине вакуумные выключатели отличаются высоким механическим и коммутационным ресурсом. Срок эксплуатации этих выключателей до списания составляет 25 лет, причем у выключателей в течение всего срока их эксплуатации отсутствует необходимость обслуживания вакуумных камер.

Элегазовые выключатели напряжением 6-10 кВ на Украине не выпускаются. Наибольшее применение в электрических сетях Украины приобрели трехфазные элегазовые выключатели внутренней установки серии LF производства Merlin Gerin, технические параметры которых приведены, например, в каталоге производителя. Эти выключатели отличаются высоким качеством изготовления, удобны и просты при монтаже, экологически безопасны, имеют механический и электромагнитный ресурс, соответствующий требованиям норм МЭК 56 и ГОСТ 687.

Особенности конструктивного исполнения вакуумных высоковольтных выключателей

Рассмотрим подробнее особенности конструктивного исполнения вакуумного выключателя серии BB/TEL предприятия «Таврида Электрик».

вакуумный выключатель BB/TEL

На рис. 1 обозначено:
1 — вакуумная дугогасящая камера;
2 — основание модуля;
3 — крышка;
4 — синхронизирующий вал;
5 — вспомогательные контакты;
6 — блокировочная тяга;
7 — привод, особенности работы которого будут рассмотрены в дальнейшем;
8 — торцевой блокировочный узел.
Как видно из рис. 1, этот выключатель состоит из трех полюсов с пофазно встроенными электромагнитными приводами, размещенными на общем основании. Приводы каждой из фаз, расположенные внутри основания выключателя, механически соединены между собой посредством общего вала, выполняющего три функции: обеспечивает синхронизацию фаз, предохраняя от неполнофазных режимов; приводит в действие вспомогательные контакты выключателя; обеспечивает механическую блокировку работы распредустройства, в котором установлен данный выключатель; управляет визуальными индикаторами положения выключателя.

конструкция вакуумного выключателя серии BB/TEL

Основные конструктивные элементы одного полюса этого выключателя с номинальным током 2000 А показаны на рис.2, где
1 — верхний вывод;
2 — вакуумная дугогасящая камера, установленная внутри полых опорных изоляторов, причем подвижные контакты каждой из дугогасящих камер жестко соединены со своими приводами посредством изоляционных тяг, также расположенных внутри опорных изоляторов;
3 — вспомогательные контакты;
4 — кулачок;
5 — блокировочная тяга;
6 — синхронизирующий вал;
7 — электромагнитный привод с магнитной защелкой, в состав которого входят конструктивные детали 8-13;
8 — пружина дополнительного поджатия контактов;
9 — отключающая пружина;
10 — якорь привода;
11 — кольцевой постоянный магнит;
12 — катушка электромагнитного привода;
13 — плоский магнитопровод;
14 — тяговый изолятор;
15 — опорный изолятор;
16 — нижний вывод.
Электромагнитный привод может находиться в двух устойчивых положениях: «Отключено» и «Включено», причем фиксация якоря в этих положениях производится без применения механических защелок. Это обеспечивается: силой упругости отключающей пружины — в положении «Отключено»; силой, создаваемой остаточным магнитным потоком кольцевого постоянного магнита, — в положении «Включено». Операция включения и отключения производится путем подачи управляющих импульсов напряжения разной полярности на однообмоточную катушку электромагнитного привода.

Принцип работы вакуумной дугогасящей камеры выключателя серии ВВ/TEL

В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического
разряда — вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, является проводящей, поэтому она поддерживает протекание тока между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7. 10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение. В том случае, когда при восстановлении напряжения на поверхности контакта (обычно анода) остаются перегретые участки, они могут служить источником эмиссии заряженных частиц, вызывающих пробой вакуумного промежутка, с последующим протеканием через него тока. Для предотвращения подобных отказов необходимо управлять вакуумной дугой, равномерно распределяя тепловой поток по всей поверхности контактов путем наложения на нее продольного, т.е. совпадающего с направлением тока, магнитного поля, которое индуцируется самим током. Именно этот весьма эффективный способ управления вакуумной дугой был осуществлен в вакуумных дугогасящих камерах выключателей серии BB/TEL.

Читайте так же:
Схема выключателя печки ваз 2114

Типовая технологическая карта (ттк) производство работ по монтажу вакуумного выключателя bb/tel

1.1. Типовая технологическая карта составлена на один из вариантов производства работ по монтажу вакуумного выключателя BB/TEL.

1.2. Типовые технологические карты предназначены для использования при разработке проектов производства работ (ППР), проектов организации строительства (ПОС), другой организационно-технологической документации, а также с целью ознакомления рабочих и инженерно-технических работников с правилами производства работ.

1.3. На базе типовых технологических карт (ТТК) в составе ППР (как обязательные составляющие проекта производства работ) разрабатываются технологические карты на выполнение отдельных видов работ.

1.4. Все технологические карты разрабатываются по рабочим чертежам проекта и регламентируют средства технологического обеспечения, правила выполнения технологических процессов при возведении, реконструкции зданий и сооружений.

1.5. Нормативной базой для разработки технологических карт являются: СНиП, СН, СП, ЕНиР, производственные нормы расхода материалов, местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.6. Типовая технологическая карта, как правило, составляется по рабочим чертежамтиповых проектов зданий, сооружений, отдельных видов работ на строительные процессы, части зданий и сооружений. При отсутствии таковых возможно составление ТТК на какой-то определенный вид специальных работ.

1.7. Цель создания представленной типовой технологической карты дать рекомендуемую схему технологического процесса, состав и содержание ТК, примеры заполнения необходимых таблиц.

При привязке типовой технологической карты к конкретному объекту и условиям строительства уточняются схемы производства, объемы работ, затраты труда, средства механизации, материалы, оборудование и т.п.

1.8. Состав и степень детализации материалов, разрабатываемых в проекте производства работ, устанавливаются соответствующей подрядной строительно-монтажной организацией, исходя из специфики и объема выполняемых работ.

1.9. Проект производства работ (в том числе и технологическая карта, как часть ППР) утверждается руководителем генеральной подрядной строительно-монтажной организации, а по производству монтажных и специальных работ — руководителем соответствующей субподрядной организации по согласованию с генеральной подрядной строительно-монтажной организацией.

1.10. Все работы по монтажу вакуумного выключателя BB/TEL осуществляют в соответствии с требованиями действующих нормативных документов:

— СНиП 3.05.06-85 Электротехнические устройства;

— СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования;

— СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство.

2. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ

2.1. В соответствии со СНиП 12-01-2004 «Организация строительства» до начала выполнения строительно-монтажных (в том числе подготовительных) работ на объекте заказчик обязан получить в установленном порядке разрешение на выполнение строительно-монтажных работ. Выполнение работ без указанного разрешения запрещается.

2.2. Подготовить места для складирования материалов, инвентаря, др. необходимого оборудования.

Организация транспортирования, складирования и хранения материалов, деталей, конструкций и оборудования должна соответствовать требованиям стандартов и технических условий и исключать возможность их повреждения, порчи и потерь.

2.3. Обеспечить связь для оперативно-диспетчерского управления производством работ.

2.4. Обеспечить строительную площадку противопожарным водоснабжением и инвентарем, освещением и средствами сигнализации.

2.5. Выполнить геодезическую разбивку осей сооружения с оформлением акта со схемами расположения знаков разбивки и данными о привязке к базисной линии и высотной опорной сети.

2.6. Составить акт готовности объекта к производству работ.

2.7. Вакуумные выключатели BB/TEL предназначены для эксплуатации в сетях трехфазного переменного тока частотой 50 Гц номинальным напряжением до 10 кВ с изолированной и компенсированной нейтралью в нормальных и аварийных режимах.

2.8. Вакуумные выключатели BB/TEL применяются в ячейках КРУ внутренней и наружной установки, а также в камерах КСО, как при новом строительстве, так и при замене выключателей.

2.9. Конструктивно вакуумный выключатель BB/TEL представляет собой три полюса, размещенных на общем основании, со встроенными пофазными электромагнитными приводами с «магнитной» защелкой.

2.10. Каждый из полюсов вакуумного выключателя BB/TEL заключен в полимерный корпус, который является основным несущим элементом выключателя.

2.11. Все три полюса механически связаны между собой синхронизирующим валом, на котором установлен кулачок для коммутации контактов вспомогательных цепей. Платы со вспомогательными контактами расположены слева и справа от среднего полюса.

2.12. Вакуумные выключатели BB/TEL предназначены для эксплуатации в сетях трехфазного переменного тока частотой 50 Гц номинальным напряжением до 10 кВ с изолированной и компенсированной нейтралью в нормальных и аварийных режимах.

2.13. Гашение дуги переменного тока осуществляется при разведении контактов в вакууме порядка 10-6 мм рт.ст. Поскольку электрическая прочность вакуумного промежутка достаточно высока (

30 кВ/мм), отключение гарантированно происходит при зазорах более 1 мм, время горения дуги при этом минимальное.

2.14. Для выполнения функции ручного отключения и блокировок выключатели в зависимости от исполнения имеют либо толкатель слева от среднего полюса (исп.45, 46 для КРУ), либо переходной шарнир с обоих сторон от основания (исп.47, 48 для КСО), либо возможность установки как толкателя так и переходного шарнира (исп.51, 52, 70, 71, 82, 83 универсального применения).

2.15. Конструктивно полюс выключателя состоит из следующих основных элементов:

— вакуумной дугогасящей камеры (ВДК), включающей в себя верхний (неподвижный) и нижний (подвижный) контакты, керамические изоляторы и внешний сильфон;

— ошиновки, включающей в себя верхнюю и нижнюю токоведущую шину, а также гибкий токосъем;

— электромагнитный привод с «магнитной» защелкой, включающей в себя якорь, катушку и кольцевой магнит, отключающую пружину и пружину дополнительного поджатия.

2.16. Принцип работы:

2.16.1. В отключенном положении контакты ВДК (поз.1 и 3 рис.1) удерживаются за счет воздействия на них пружины отключения (поз.9) через тяговый изолятор (поз.5).

Рис.1. Конструкция полюса вакуумного выключателя

2.16.2. При подаче команды на включение включающий конденсатор блока управления (на рис. не показан) разряжается на катушку привода (поз.11). Протекающий при этом ток создает магнитный поток в зазоре между якорем электромагнита (поз.12) и кольцевым магнитом (поз.13).

Читайте так же:
Стенд для проверки автоматического выключателя

2.16.3. В момент, когда сила тяги якоря, создаваемая магнитным потоком, превосходит усилие пружины отключения (линия 1 рис.2), якорь электромагнита (поз.12) вместе с тяговым изолятором (поз.5) и подвижным контактом (поз.3) вакуумной камеры начинает движение вверх, сжимая пружину отключения (поз.9).

2.16.4. В процессе движения якорь набирает скорость около 1 м/с. Такая скорость является оптимальной для процесса включения и позволяет полностью исключить дребезг контактов при включении и снизить вероятность пробоя до замыкания контактов.

2.16.5. При замыкании контактов вакуумной камеры в магнитной системе остается зазор дополнительного поджатия равный 2 мм. Скорость движения якоря падает, так как ему приходится преодолевать усилие пружины отключения (поз.9) и дополнительного контактного поджатия (поз.10).

2.16.6. В момент замыкания магнитной системы якорь соприкасается с верхней крышкой привода (поз.8) и останавливается.

2.16.7. Выключатель остается во включенном положении за счет остаточной индукции, создаваемой кольцевым постоянным магнитом (поз.13), который удерживает якорь (поз.12) в притянутом к верхней крышке (поз.8) положении без дополнительной токовой подпитки.

2.16.8. Запас по усилию удержания (сила, необходимая для отрыва якоря (поз.12) от верхней крышки (поз.8), приложенная вдоль оси привода), составляет 450-500 Н (45-50 кгс) для одного полюса выключателя, то есть 1350-1500 Н (135-150 кгс) для выключателя в целом.

2.16.9. Для отключения выключателя необходимо приложить к выводам катушки напряжение отрицательной полярности. Ток, протекающий по обмотке, размагничивает магнит (поз.10).

2.16.10. Якорь электромагнита (поз.11) под действием пружины отключения и пружины дополнительного контактного поджатия разгоняется и наносит удар по тяговому изолятору (поз.5), соединенному с подвижным контактом 3 вакуумной камеры. Ударное усилие, создаваемое якорем электромагнита, превышает 2000 Н (200 кгс), что позволяет гарантированно отключить выключатель.

2.16.11. После удара подвижный контакт (поз.3) приобретает высокую стартовую скорость и под действием отключающей пружины совместно с якорем электромагнита (поз.11) тяговым изолятором (поз.5) продолжает свое движение вплоть до конечного (отключенного) положения.

Рис.2. Внешний вид выключателя ВВ/TEL

2.17. Монтаж выключателя. Перед установкой выключателей проверяют комплектность оборудования. Рабочее положение выключателей на номинальный ток 1000 А произвольное. Рабочее положение выключателей на ток 1600 А вертикальное, при этом разрешается устанавливать выключатель как приводом вверх, так и приводом вниз.

Для обеспечения необходимой электродинамической стойкости выключателя, установленного в КРУ или КСО, при протекании токов КЗ, необходимо предусматривать установку дополнительных опорных изоляторов, если длина шин между выводами выключателя и ближайшим опорным изолятором превышает 0,5 м (рис.3), для аппаратов с номинальным током 1000 А и 0,8 м (рис.4) для аппаратов с номинальным током 1600 А.

При монтаже выключатель в КСО необходимо предусмотреть крепление стяжкой выключателя за узлы опорной конструкции под болт М16, расположенные с противоположной стороны от токоведущих выводов на полюсе выключателя 1000А по рис.5.

Рис.4. Установка дополнительных изоляторов для аппаратов с током 1600 А

Рис.5. Крепление выключателя стяжкой

Рис.6б. Точки крепления аппарата на ток 1600 А

Точки крепления (1 и 2), а также моменты затяжки, типы болтов, необходимых для крепления выключателя к несущим металлоконструкциям и к ошиновке, представлены на рис.6а для аппаратов на номинальный ток 1000 А и на рис.6б для аппаратов на номинальный ток 1600 А. При креплении к выводам BB/TEL на 1600 А для компенсации крутящих моментов выводов главной цепи ВВ удерживать контакт ключом на 46 в соответствии с рис.6б.

2.18. Монтаж ошиновки. Ошиновка выключателей должна проводиться шинами, подогнанными к выводам аппарата. Недопустимо притягивание шин к выводам аппарата, при котором создаются статические усилия в направлении, перпендикулярном оси полюса, превышающие нормируемые значения. Максимальные нормируемые значения статических усилий, создаваемых ошиновкой, представлены на рис.7а выключателей на номинальный ток 1000 А и рис.7б на номинальный ток 1600 А.

Рис.7а. Максимальные значения усилий аппарата на ток 1000 А

Рис.7б. Максимальные значения усилий аппарата на ток 1600 А

Для подключения верхнего вывода выключателя рекомендуется применять шину ИТБА 741131.062, чертеж которой представлен на рис.8.

Рис.8. Шина для верхнего вывода выключателя

2.19. Заземление выключателя. Корпус привода выключателя заземляется при помощи медного неизолированного проводника сечением 4 мм. Все исполнения выключателя имеют болт заземления М10 (исполнение 67 — М12).

3. ТРЕБОВАНИЯ К КАЧЕСТВУ И ПРИЕМКЕ РАБОТ

3.1. На всех этапах работ следует выполнять производственный контроль качества строительно-монтажных работ, который включает в себя входной контроль рабочей документации, конструкций, изделий, материалов и оборудования, операционный контроль отдельных строительных процессов или производственных операций и приемочный контроль промежуточных и окончательных циклов работ. Состав контролируемых показателей, объем и методы контроля должны соответствовать требованиям СНиП.

3.2. Качество производства работ обеспечивается выполнением требований технических условий на производство работ, соблюдением необходимой технической последовательности при выполнении взаимосвязанных работ, техническим контролем за ходом работ.

Контроль качества строительно-монтажных работ должен осуществляться специалистами или специальными службами, оснащенными техническими средствами, обеспечивающими необходимую достоверность и полноту контроля.

3.3. При входном контроле рабочей документации должна производиться проверка ее комплектности и достаточности содержащейся в ней технической информации для производства работ.

3.4. При входном контроле строительных конструкций, изделий, материалов и оборудования следует проверять внешним осмотром их соответствие требованиям стандартов или других нормативных документов и рабочей документации, а также наличие и содержание паспортов, сертификатов и других сопроводительных документов. Результаты входного контроля фиксируются в Журнале учета результатов входного контроля по форме: ГОСТ 24297-87, Приложение 1.

3.5. Операционный контроль осуществляется в ходе выполнения строительных процессов или производственных операций с целью обеспечения своевременного выявления дефектов и принятия мер по их устранению и предупреждению.

При операционном контроле следует проверять соблюдение заданной в проектах производства работ технологии выполнения строительно-монтажных процессов; соответствие выполняемых работ рабочим чертежам, строительным нормам и правилам. Особое внимание следует обращать на выполнение специальных мероприятий при строительстве на просадочных грунтах, в районах с оползнями и карстовыми явлениями, вечной мерзлоты, а также при строительстве сложных и уникальных объектов.

Результаты операционного контроля фиксируются также в Журнале общих работ (Рекомендуемая форма: СНиП 12-01-2004 «Организация строительства», Приложение Г).

Читайте так же:
Наружный выключатель для насоса

3.6. Приемочный контроль производится для проверки и оценки качества законченных строительством объектов или их частей, а также скрытых работ и отдельных ответственных конструкций.

3.7. По окончании выполнения монтажных работ производится их освидетельствование Заказчиком и документальное оформление с составлением Акта промежуточной приемки ответственной конструкции. К данному акту необходимо приложить:

— исполнительную схему готовой конструкции с привязкой к разбивочным осям, с указанием геометрических размеров и высотных отметок. Исполнительная схема составляется в одном экземпляре, в виде отдельного чертежа, за подписью главного инженера Подрядчика;

— паспорта, сертификаты качества и лабораторные заключения на применяемые строительные материалы, конструкции и изделия.

Вся приемо-сдаточная документация должна соответствовать требованиям СНиП 12-01-2004.

3.8. На объекте строительства должен вестись Общий журнал работ, Журнал авторского надзора проектной организации и Оперативный журнал геодезического контроля.

4. КАЛЬКУЛЯЦИЯ ЗАТРАТ ТРУДА И МАШИННОГО ВРЕМЕНИ

4.1. Калькуляции затрат труда и машинного времени на монтаж вакуумного выключателя приведены в таблице 1.

Принципиальные Схемы 6 Кв

Рассмотрим наиболее характерные типовые схемы распределительных устройств, нашедшие широкое применение при проектировании подстанций с высшим напряжением 35— кВ.


Каждая линия и трансформатор рассчитаны на покрытие всех нагрузок первой категории и основных нагрузок второй категории. Необходимость и места установки регулирующих, защитных и компенсирующих устройств, измерительных трансформаторов тока и напряжения, токоограничивающих и дугогасящих реакторов, а также схемы их присоединения; 1.
Работа схемы АВР на п/ст 6 кВ ВМПЭ



Если пропадет напряжение на одной из секций РП2 или РПЗ, то автоматически включается секционный выключатель 1 и все питание этих РП переходит только на один источник по оставшейся в работе питающей линии. В соответствии с этими требованиями разработаны типовые схемы распределительных устройств подстанций 6 — кВ, которые должны применяться при проектировании подстанций.

Схемы с обходными системами шин — 12, 12Н, 13Н и 14 рекомендуются для РУ ПС с повышенными требованиями к надежности питания ВЛ, а также с устройствами для плавки гололеда в районах с загрязненной атмосферой и при необходимости периодической чистки изоляции и др. Работой устновлено минимальное количество типовых схем РУ, охватываших большинство встречающихся в практике слу чаев проектирования ПС и переключательных пунктов и позволяющих при этом достичь наиболее экономичных унифшированных решений.

Один из вариантов схемы по типу мостика с выключателями в цепях линий и ремонтной перемычкой со стороны линий показан на рис.

Допускается применение распределительных пунктов при нагрузке на их шинах не менее 7 МВт при напряжении 10 кВ, не менее 4 МВт при напряжении 6 кВ [19].

Питание крупного предприятия от двух независимых источников Глубокое секционирование всех звеньев системы с устройствами АВР на секционных выключателях обеспечивает надежность и бесперебойность питания потребителей первой категории. Для повышения надежности РУ, применяется схема 9Н или 9АН с секционированием рабочей системы шин по числу трансформаторов и с подключением каждого трансформатора и ответственных линий в секционирующую цепочку из двух или трех выключателей к разным секциям шин.

Как прочитать принципиальную схему задвижки

Схемы питающих электрических сетей 10(6) кВ

Пример схемы электроснабжения при питании особой группы электроприемников Кабельные перемычки и мощность третьего аварийного источника выбираются исходя из нагрузки приемников особой группы, предназначенных только для безаварийного останова производства. Проходная подстанция включается в рассечку одной или двух линий с двусторонним или односторонним питанием.

Питание распределительных пунктов осуществляется по радиальным схемам от разных секций шин 10 6 кВ опорных подстанций или подстанций глубокого ввода либо от разных подстанций. Недостатками рассмотренной схемы являются: отключение КЗ на линии двумя выключателями, что увеличивает общее количество ревизий выключателей; удорожание конструкции РУ при нечетном числе присоединений, так как одна цепь должна присоединяться через два выключателя; снижение надежности схемы, если количество линий не соответствует числу трансформаторов.

Схема электрическая принципиальная Отходящая линия к ТСН Страница 3 из 4 Схемы питающих электрических сетей 10 6 кВ Назначение питающих электрических сетей — концентрированная передача мощности в районы, удаленные от подстанций глубокого ввода и опорных подстанций.

Перемычка из двух разъединителей используется при отключениях линий. Наряду с достоинствами схема с одной несекционированной системой шин обладает рядом недостатков.

В нормальном режиме один из разъединителей перемычки должен быть отключен. По степени надежности электроснабжения магистральные схемы можно подразделить на две основные группы.

Схемы 15, 16 и 17 при числе линий более 4, а также по условиям сохранения устойчивости энергосистемы, проверяются на необходимость секционирования сборных шин. Более сложная схема содержит также одну секционированную систему шин, но в ней добавляется обходная система шин рис.

Указания по применению схем четырехугольника и шестиугольника.
Что такое звезда и треугольник в трансформаторе?

Схемы распределительных сетей 10(6) кВ

Для разработанного набора схем РУ выполняются типозые проектные решения компоновок сооружений, установки оборудования, устройств управления, релейной защиты, автоматики и строительной части.

Для эффективного использования РП его мощность выбирается таким образом, чтобы питающие его линии, выбранные по току короткого замыкания, были полностью загружены с учетом послеаварийного режима. Включение может быть предусмотрено как вручную, так и автоматически.

Вопрос 3. А с аккумуляторными батареями. Основным принципом построения распределительной сети для электроприемников III категории является сочетание петлевых резервируемых линий напряжением 10 6 — 20 кВ для двухстороннего питания каждой ТП и радиальных нерезервируемых линий 0,4 кВ к потребителям.

Если пропадет напряжение на одной из секций РП2 или РПЗ, то автоматически включается секционный выключатель 1 и все питание этих РП переходит только на один источник по оставшейся в работе питающей линии. Таким образом, для сети рис. В последующем — при одном трансформаторе и двух линиях или при двух трансформаторах и одной линии — устанавливаются, как правило, три выключателя. Схема электрическая принципиальная ТНкВ.

Указанные недостатки частично устраняются путем разделения сборных шин на секции, число которых обычно соответствует количеству источников питания. При повреждении секционного или шиносоединительного выключателя допускается потеря двух энергоблоков и линий, если при этом сохраняется устойчивость энергосистемы. При необходимости коммутации двух трансформаторов и трех линий в качестве схемы РУ может быть использована схема сдвоенного мостика с 4-мя выключателями. Ремонт выключателей напряжением кВ и выше должен быть возможным без отключения присоединения.

Читайте так же:
Основные неисправности быстродействующего выключателя


В нормальном режиме. Применяются схемы с одной, двумя, четырьмя секционированными системами сборных шин. Одиночные магистрали с частичным резервированием питания по связям вторичного напряжения.

При необходимости коммутации двух трансформаторов и трех линий в качестве схемы РУ может быть использована схема сдвоенного мостика с 4-мя выключателями. Одновременное аварийное отключение двух линий или двух трансформаторов в рассмотренной схеме маловероятно.

Линии кВ имеют пропускную способность около МВт, поэтому три линии вполне обеспечат выдачу всей мощности присоединенных энергоблоков с учетом возможного расширения. Рекомендуется также предусматривать взаимное резервирование линий напряжением 0,4 кВ, питающих в нормальном режиме раздельно силовую и осветительную нагрузку.
Урок №37. Как читать принципиальные схемы

Последние комментарии

Резервирование электроприемников 1-й категории на однотрансформаторных подстанциях осуществляется перемычками В между ближайшими ТП. Управление вакуумными выключателями принято как местное, с помощью ключей, установленных на фасадах шкафов КРУ, так и дистанционное, с панели дистанционного управления, расположенной в ОПУ.

Схема 10 6 -2 — две секционированные выключателями системы шин применяется при двух трансформаторах с расщепленными обмотками или при сдвоенных реакторах, присоединенных каждый к двум секциям. Для РУ кВ применяются схемы, рекомендованные для напряжения кВ.

Повреждение или отказ любого выключателя не должны приводить к нарушению транзита через шины электростанции, т. Число одновременно срабатывающих выключателей должно быть не более: двух — при повреждении линии; четырех — при повреждении трансформаторов напряжением до кВ, трех — кВ.

Энергоблоки, как правило, следует присоединять через отдельные трансформаторы и выключатели на стороне повышенного напряжения. Схема электроснабжения небольшого предприятия с ответственными нагрузками.

В схемах 10 6 -1, 10 6 -2 допускается установка на вводе 10 6 кВ дополнительных ТТ. На второй ступени электроэнергия распределяется между двухтрансформаторными или однотрансформаторными цеховыми ТП.

Это упрощает схему коммутации и конструктивное выполнение подстанций, что особенно важно для удешевления комплектных подстанций заводского изготовления. Схемасдвумя системами сборных шин На рис. Для разработанного набора схем РУ выполняются типозые проектные решения компоновок сооружений, установки оборудования, устройств управления, релейной защиты, автоматики и строительной части. Трансформаторы цеховых ТП подключаются к линиям наглухо, и вся коммутационная аппаратура устанавливается на РП.

Нерасчетные аварийные режимы, сопровождающиеся значительными разовыми экономическими последствиями отказ двух или трех элементов схемы , могут приниматься во внимание в случае, когда сравниваемые при расчетных авариях варианты схем равнозначны. В нормальном режиме.

На предприятиях, особенно крупных, обычно не ограничиваются какой-либо одной из описанных выше схем. Схемы подстанций должны формироваться таким образом, чтобы была возможность их поэтапного развития. Вся нагрузка переводится на исправный кабель.
Однолинейные схемы

Структурная схема АВР на распределительных подстанциях 6(10) кВ

В данной статье речь пойдет о реализации автоматического ввода резерва (АВР) на распределительных подстанциях напряжением 6(10) кВ.

Требования к устройствам АВР на подстанциях распределительных сетей согласно ПУЭ рассмотрено в статье: «Требования к устройствам АВР в сети 6-35 кВ».

Принцип действия АВР секционного выключателя QЗ такой подстанции в виде последовательных операций представлен на рис. 1.

Рис.1а - Поясняющая схема

Пусковой орган напряжения АВР срабатывает, если автоматический выключатель трансформатора напряжения секции SF1 ТН1(2) включен, тележка ТН1(2) вкачена, напряжения Uаb и Ubс ниже уставки срабатывания и имеется нормальное напряжение на соседней секции. По истечении уставки срабатывания АВР по времени tАВР если переключатель АВР SA1 включен, отключается выключатель ввода секции, потерявшей питание.

Включение секционного выключателя выполняется по факту отключения выключателя ввода через орган однократного действия. Для обеспечения однократности обычно применяют схему, в которой команда «включить» подается через последовательно соединенные размыкающий вспомогательный контакт выключателя ввода и замыкающий с выдержкой времени на отпадание контакт реле положения «включено» KQC выключателя ввода.

Эта цепь дает импульсную команду на включение Q3, длительность которой определяется временем отпадания реле KQC. Это время регулируется при наладке реле KQC и принимается больше времени включения выключателя QЗ при пониженном напряжении оперативного тока с некоторым запасом, обычно оно составляет 0,5 — 0,6 с.

Таким образом, схема АВР состоит как бы из двух частей: пускового органа АВР по напряжению (иногда он дополняется пусковым органом по обрыву фаз питающей линии) и так называемого «быстрого» АВР, когда за отключением выключателя рабочего питания мгновенно следует включение выключателя резервного питания.

«Быстрое» АВР (не путать с быстродействующим!) может сработать самостоятельно, без пусковою органа АВР, например при самопроизвольном отключении выключателя рабочею питания или при его отключении защитой питающего рабочий ввод трансформатора.

В схемах Теплоэлектропроекта (рис.1б) вместо двухрелейного пускового органа минимального напряжения (Uаb < + Ubс <) применяют фильтр-реле напряжения обратной последовательности (U2 < + Uаb <), принцип действия которого описан в [Л2, с.83].

При перегорании предохранителей ТН1(2) со стороны ВН в двух фазах на стороне 6(10) кВ нарушается симметрия напряжений, подводимых к фильтру-реле напряжения обратной последовательности, появляется напряжение обратной последовательности, в результате схема АВР ложно — не действует.

Рис.1б - блок-схема АВР

Однако на подстанциях потребителей, получающих питание через длинные воздушные линии (особенно напряжением 6 и 10 кВ), где обрыв фазы линии значительно более вероятен, чем перегорание предохранителя на стороне ВН ТН1(2), часто делают наоборот дополняют двухрелейный пусковой орган АВР пуском по напряжению обратной последовательности с контролем его отсутствия на резервном источнике питания.

В современных схемах выполняют запрет АВР при КЗ на секции, для этого в схеме защиты ввода устанавливают дополнительное промежуточное реле KL, которое срабатывает от контактов выходного реле защиты РЗ, самоудерживается и остается притянутым в течение времени возврата реле KQC (рис. 1в). Размыкающий контакт KL включают последовательно в цепь однократности, что и обеспечивает запрет АВР при срабатывании зашиты ввода.

Рис.1в - Схема с запретом АВР при КЗ на шинах и дуговых замыканий в ячейках

Более подробно реализация АВР на распределительных подстанциях с использованием электромеханических реле рассмотрена в статье: «Схема местного устройства АВР двухстороннего действия на секционном выключателе 6 (10) кВ в формате dwg».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector