Mpk-prometey.ru

МПК Прометей
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Переключатель на 2 направления что это

Переключатель на 2 направления что это?

Переключатель на 2 направления что это?

Управление освещением с двух мест – идея не новая, но активно применяющаяся и в наши дни. Для ее реализации используются проходные выключатели.

Чем отличается проходной выключатель от обычного выключателя?

Если посмотреть на проходной выключатель со стороны, то никаких внешних отличий вы не найдете. Существенное и единственное отличие таких выключателей от простых, кроется внутри их конструкции.

У обычного однополюсного одноклавишного выключателя в конструкции установлены два контакта, неподвижный и подвижный. Подвижный контакт приводится в движение клавишей, которую мы нажимаем рукой, и замыкается с неподвижным контактом. Тем самым замыкается электрическая цепь и на лампу подается питающее напряжение. Существуют также конструкции двухполюсных одноклавишных выключателей по сути выполняющих ту же самую функцию, что и предыдущий. Его отличие состоит в том, что нулевая жила, идущая к лампе, рвется аналогично фазной. Сделано это для улучшения безопасности.

Рисунок 1. Принципиальная схема подключения однополюсного и двухполюсного одноклавишных выключателей

У проходного выключателя имеется два неподвижных и один подвижный контакты. Подвижный контакт всегда замкнут с одним из неподвижных. При нажатии клавиши и переводе ее из одного положения, например, «выключено» в другое положение – «включено», подвижный контакт также меняет свое положение, размыкаясь с замкнутым контактом и замыкаясь с разомкнутым.

То есть у проходного выключателя отсутствует положение «выключено» и он работает не как выключатель, а как переключатель. Поэтому в технической литературе и в каталогах производителей правильно он называется – переключатель. Например: «однополюсный одноклавишный переключатель на два направления».

Помните об этом, когда будете покупать выключатели для сборки схемы управления с двух мест.

Кроме однополюсных переключателей бывают двухполюсные и даже трехполюсные переключатели. Для простоты понимания в данной статье мы будем употреблять выражение не переключатель, а проходной выключатель, так как оно чаще употребляется среди людей.

Где применяется подобная система управления освещением?

Наиболее часто рассматриваемая система управления освещением применяется в общественных и производственных помещениях, а именно: в длинных коридорах, туннелях, проходных комнатах, то есть в комнатах, где имеются две двери равноценно служащие в качестве входа и выхода, в лестничных маршах и других местах. Во всех перечисленных случаях проходные выключатели устанавливаются рядом с дверьми.

Если говорить о жилых помещениях, то местом установки проходных выключателей могут быть, например, входная дверь в комнату и место на стене рядом с прикроватной тумбой. В таком случае человек, зашедший в комнату, включит свет, нажав проходной выключатель расположенный рядом с дверью, а устроившись на кровати, не вставая сможет его выключить вторым проходным выключателем расположенный рядом с кроватью.

При помощи проходных выключателей можно управлять как одним светильником или лампой, так и их группой. Для каждого случая применяются разные типы проходных выключателей (одноклавишные, двухклавишные, трехклавишные). цель, которую преследует человек, устанавливая такие выключатели, это удобство управления светом и снижение затрат на электроэнергию.

Подключение проходного одноклавишного выключателя

На рисунке 2 показана принципиальная схема подключения проходных выключателей предназначенных для управления одной лампой или одной группы ламп с двух, удаленных друг от друга, мест. Как вы уже, наверное, поняли, что у однополюсного проходного выключателя имеются два неподвижных и один перекидной контакт. На перекидной контакт одного из выключателей подается питающее напряжение. Перекидной контакт второго выключателя соединяется с лампой, а лампы в свою очередь, с нулевым проводом питающей сети. Неподвижные контакты первого выключателя соединятся двумя отдельными проводниками с двумя неподвижными контактами второго выключателя.

Рисунок 2. Принципиальная электрическая схема подключения проходного выключателя с одним полюсом и одной клавишей

На схеме положение перекидных контактов обоих выключателей одинаково, что соответствует, например, опущенному положению их клавиш. Электрическая цепь при этом разомкнута. Если мы нажмем клавишу первого выключателя и переведем ее в поднятое положение, то перекидной контакт этого выключателя соответственно тоже изменит свое положение и замкнет электрическую цепь. По цепи потечет электрический ток (направление тока показано стрелочками), и лампа начнет светиться. Если теперь нажать клавишу второго выключателя и также изменить его положение, то цепь вновь окажется разомкнутой и лампа погаснет.

Для более наглядного представления о том, как производится соединение проводников, на рисунке 3 представлена монтажная схема подключения проходных выключателей. Круг зеленого цвета есть не что иное, как распределительная коробка, внутри которой производится соединение проводов. Кругляшки внутри коробки, это пайки проводов, выполненные в виде скруток со сваркой, обжатые самозажимными изолирующими колпачками, соединенные клеммами или винтовым соединением. Все остальное я думаю и так понятно.

Рисунок 3. Монтажная схема подключения однополюсных одноклавишных проходных выключателей

На представленном ниже рисунке 4, показана схема расстановки оборудования и прокладки проводов. Соединение проводов в этом случае осуществлено в двух распределительных коробках 1 установленных над проходными выключателями 3. Сделано это с целью экономии проводов. В случае установки одной распределительной коробки и сборки схемы в ней, дополнительно от коробки до ближайшего к нам выключателя пришлось бы прокладывать еще два провода. Если бы питающие провода подводились со стороны лампы 2, то все соединения можно было произвести в одной коробке без лишних затрат проводов.

Читайте так же:
Установка выключателя расстояние от двери

Переключатели на два направления: схема подключения

Переключатель на два направления (двухполюсный) также относится к электрическим коммутационным устройствам, как и обычный (однополюсный) выключатель. Но если последний позволяет только разорвать или соединить электрическую цепь, то переключатели могут оперировать несколькими соединениями. На рисунке ниже наглядно показаны их основные отличия.

Схематическое изображение различных коммутационных устройств

На рисунке показано:

  1. обычный выключатель и вариант его подключения;
  2. пример использования сдвоенного выключателя;
  3. подключение двухполюсного выключателя;
  4. коммутатор.

Заметим, что переключатели могут быть на два и более направлений, например, четырехполюсный или силовой трехфазный. О последних имеет смысл рассказать более подробно.

Трехфазные коммутаторы

Трехфазные силовые переключатели широко применяются в схемах управления мощными асинхронными электродвигателями, их назначение – переключение обмотки со «звезды» на «треугольник». Такая реализация позволяет существенно снизить пусковой ток. На рисунке показана схема такого подключения.

Схема переключения обмоток электродвигателя

Обозначения на схеме:

  • А, В, С – фазы питания;
  • С1, С2, С3, С4, С5, С6 – выходы обмоток электродвигателя;
  • SA – трехполюсный силовой коммутатор.

Запуск электродвигателя происходит, когда его обмотки соединены «звездой», при входе в штатный режим, осуществляется переключение на «треугольник».

Многопозиционные коммутаторы модульного типа

Кулачковый пакетный переключатель — наиболее распространенный тип данных устройств, как и другие коммутаторы, он применяется для управления различными видами электрических нагрузок.

Сфера применения кулачковых коммутаторов довольно обширна, приведем несколько примеров их использования:

  • коммутационные щиты управления переменным и постоянным током;
  • системы аварийного выключения, автоматического ввода резерва, переключения режимов работы электродвигателей;
  • управление трансформаторными подстанциями и освещением;
  • оборудование для подстанций (управление заземлителями, секционными выключателями, разъединителями и т.д.);
  • переключение режимов нагревательного оборудования (включение, выключение, переключение электронагревательных элементов нагрузки);
  • выбор режима работы электросварочного оборудования и т.д.

Кулачковые переключатели состоят из нескольких пакетов (каждый из которых отвечает за коммутацию одной линии), помещенных в один корпус. На нижнем рисунке показано устройство такого пакета.

Пакет кулачкового коммутатора

Обозначения на рисунке:

  • a — зафиксированные контакты (4 шт.), к которым подключаются провода;
  • b – специальный выступ «кулачек», который позволяет удерживать и перемещать шток;
  • c – группа передвижных контактов (в данном типе их две);
  • d – два направляющих паза (позволяют штоку совершать поступательные движения);
  • e – покрытые изолирующей оболочкой два штока;
  • f – контакты (8 шт.), как правило, изготовленные из сплава, содержащего серебро;
  • g – пакет;
  • h – две резьбовых шпильки (фиксируют пакет и крышку);
  • I – ротор;
  • J – четыре пружины (возвращают шток в замкнутое положение);
  • k- соединяющий рукоять с ротором вал;
  • l – четыре винта для зажима проводов кабеля.

Принцип работы проходных и перекрестных переключателей

Переключатель на 2 направления что это?

Проходные выключатели представляют собой механизмы, обеспечивающие координацию работы одного источника света из нескольких разных точек. Для освещения помещения обычно использовали типичный выключатель, расположенный у входа. Это стандартный метод, применяемый повсеместно многие десятилетия. Однако сегодня его сложно отнести к разряду экономичных, особенно если учесть последние тенденции в сфере энергосберегающих технологий.
Вот почему компании, специализирующиеся на производстве электрических устройств, включают в спектр своих предложений инновационный подход — размещение проходных выключателей. В чем специфика их работы, как их подключать, с какой целью устанавливаются такие механизмы и многое другое интересует современных пользователей. Попробуем разобраться во всем вместе.

Зачем устанавливать этот механизм? Есть несколько направлений его эксплуатации:

  • Вы входите в спальню, зажигаете верхний свет, затем прикроватную лампу, чтобы полистать журнал или книгу, прежде чем лечь спать. Зато потом вам все равно придется снова вставать, чтобы выключить свет. Но не всегда хочется подниматься из теплой постели. Вот зачем дополнительно под рукой нужен проходной выключатель: для отключения общего света.
  • Если в вашей квартире длинный коридор, можно и здесь монтировать такие механизмы: в начале и в конце. Чтобы войти и сразу включить свет, а по выходе — выключить. Это просто намного удобнее, да и экономичнее.
  • Предыдущий пункт относится и к межэтажным лестничным пролетам.
  • В квартирах с проходной комнатой тоже удобно размещение такого механизма – это позволяет экономить электроэнергию.

Нередко можно услышать о выключателях с вмонтированным датчиком времени. Да, они тоже помогают сберечь энергоресурсы. Принцип работы этого механизма заключается в том, что задается определенный временной интервал, в продолжение которого электрическая энергия направляется на источник света. И после истечения этого срока он сам выключается.

Это тоже выход. Но лучше предусмотреть максимум бытовых ситуаций. Например, поднимаетесь вы стремительно по ступеням лестницы в подъезде, и времени вполне достаточно для освещения пролета. Но если кто-то идет медленно, с грузом, и где-то в середине пролета свет выключается, в этом, согласитесь, мало приятного.

Кроме того, механизмы с датчиком времени не отличаются надежностью, это доказано в ходе эксплуатации.

Что такое проходной выключатель?

Корректнее будет назвать его переключателем: он содержит не два, а три контакта, позволяющих производить переключение фаз. Этим он принципиально отличен от стандартных аналогов.

Как управлять механизмом из двух точек?

Схема подключения предполагает корректное соединение трех контактов.

Важно! От распределительной коробки к выключателю оптимально прокладывать трехжильный кабель. Так, чтобы в коробку поступало от всех по три провода.

Как подключается этот механизм?

Если координация предполагается из двух зон:

Каким образом предпочтительнее установить все составляющие? Особо жестких требований для этого нет. Основным принципом монтажа должна быть экономия стройматериалов. Речь о расходе электропровода. Вот почему сначала важно замерить пространство и выбрать правильную зону для монтажа распределительной коробки. Кроме того, стоит учесть, что внутренняя проводка подразумевает штробление стен, размещение кабеля и последующую отделку, чтобы придать пространству эстетичный вид.

Установка двух секционных выключателей

Панели секционные

При выполнении сборки ГРЩ, которые имеет два ввода, в обязательном порядке используют панели секционные, а вот в их устройстве непременно присутствует секционные выключатели. Помимо них в схеме присутствуют выключатели отходящих линий, кабельные каналы и отсеки для шинных соединений. Собирают цепь на реле, которое управляет всеми выключателями.

Секционными выключателями, как правило, являются селективные автовыключатели, которые обладают интересным свойством избирательного отключения – отключать не всю схему, а только поврежденные участки.

При наличии селективности сразу выясняется причина, по которой произошло отключение сети. А при ее отсутствии осуществить поиск причины намного сложнее.

Работу таких выключателей можно привести на простом примере: перегорает одна из лампочек в квартире – отключается автомат освещения, а не весь подъезд. Кстати, наличие селективных выключателей в сети — это еще и очень удобно.

Еще одно свойство селективных выключателей заключается в том, что они отключают не сразу все выключатели, расположенные последовательно – один за другим, а постепенно – выборочно.

Они могут быть выполнены в различных вариантах, все зависит от исполнения самого ГРЩ. Селективные выключатели бывают съемными – их удобно снимать при замене, стационарными, когда они крепятся на постоянной основе, и выкатные – это самый удобный вариант, так как выключатели в этом случае просто выкатываются.

Выключатели, которые присутствуют на отходящих контурах, оснащены ручным приводом. При необходимости, для управления на расстоянии, можно установить выключатели, которые имеют моторный привод. Ошиновку выполняют по значению номинального тока.

Благодаря двум вводам, в аварийной ситуации, в ГРЩ, оснащенных панелями секционными, происходит переключение с аварийной фазы на запасную.

Предназначением секционных панелей является секционирование шин распределительных устройств в том случае, когда питание каждой из секций подает отдельный трансформатор. При помощи таких панелей происходит комплектация распределительных устройств на двух трансформаторных подстанциях.

В панелях предусмотрена защита от внезапного одно и многофазного короткого замыкания секции шин. Кроме того, предусмотрено автоотключение неприоритетных нагрузок.

Вы можете заказать у нас типовой проект, можете предоставить нам свой собственный. Мы примем у вас заказ на разработку любого вашего проекта – мы готовы осуществить любой ваш замысел.

Для своего проекта вы можете выбрать и закупить у нас оборудование или предоставьте эту работу нашим специалистам.

Завод электрощитового оборудования «ПК ЭЛТА» готов выполнить любой проект ГРЩ на секционных панелях и проведет полный цикл их сборки.

Определение необходимости установки секционного реактора. Выбор секционного выключателя.

Пример 1. Определить необходимость установки секционного реактора в ГРУ 10 кВ ТЭЦ с генераторами типа ТВФ-63-2ЕУ3.

Исходные данные:

генераторов: РНОМ = 63 МВт; UНОМ = 10,5 кВ; cosφГ =0,8;

трансформаторов связи: SНОМ, Т = 32 МВА, КТ = 115/11 кВ;

системы: SК = 5000 МВА.

линий: L = 30 км; ХУД = 0,4 Ом/км.

местная нагрузка: РМН, МАКС = 80 МВт; cosφМН =0,8 (рис.1).

Решение. Расчетная схема ТЭЦ с указанием всех элементов и расчетной точки КЗ: К-1 показана на рис.1.

Рис.1.Расчетная схема ТЭЦ

Расчет токов КЗна шинах ГРУ. За базисные единицы приняты:

Сопротивления элементов схемы замещения (рис.2), приведенные к базисным условиям:

Рис.2.Схема замещения ТЭЦ без секционного реактора

Л = ХУД ·L ·Sб / U 2 б = 0,4· 30· 100 / 115 2 = 0,09;

Т = uК · Sб / 100·SНОМ, Т = 10,5·100/ 100·32 = 0,328;

Г = // d НОМ · Sб / SНОМ, Г = 0,136·100 / 6,3 /0,8 = 0,173;

Сверхпереходная ЭДС генераторов принимаем:

1 / (0,02+ 0,045+ 0,164) = 4,36

В именованных единицах:

В именованных единицах: IГ = 11,56·5,5 = 63,58 кА.

= 4,36 + 11,56 = 15,92

I = 15,92·5,5= 87,56 кА.

Вывод: начальное значение периодической составляющей тока трехфазного КЗ превышает 63 кА (номинальный ток отключения выключателей типа МГГ) – необходима установка секционного выключателя.

Пример 2. Выбрать секционный реактор.

Секционный реактор (СР) выбирается по :

— номинальному напряжению – UНОМ,Р, кВ должно выполняться условие: UУСТ≤UНОМ.

— номинальному току (длительно допустимый ток при естественном охлаждении) IНОМ,Р, А, должно выполняться условие: IРАБ. УТЯЖ.≤ IНОМ,Р.

— номинальному индуктивному сопротивлению – ХР, Ом, выбирается максимальное значение по справочнику.

Анализируем максимально возможные перетоки мощности через секционный реактор в аварийных режимах для определения утяжеленного режима (повышенные нагрузки в ремонтном или послеаварийном режимах), рис.3. Очевидно, что расчетным является режим при отключении трансформатора связи (рис.3, а) :

Максимально возможный ток через секционный реактор

IРАБ. УТЯЖ = SСР / UНОМ = 25/ ·10,5 = 1,38 кА.

По справочнику выбираем реактор типа РБ 10-1600 -0,35

Рис.3.Переток мощности через секционный реактор в аварийных режимах:

а) при отключении трансформатора; б) при отключении генератора

Далее рассчитываем ток КЗ при наличии секционного реактора (рис.4).

ср = ХСР ·Sб / U 2 б = 0,35·100/ 10,5 2 = 0,32

Рис.4.Схема замещения ТЭЦ с секционным реактором:

а) исходная; б) преобразованная относительно точки К1

от генератора Г1

В именованных единицах: IГ1 = 5,78·5,5 = 31,79 кА.

от системы и генератора Г2

Для определения тока КЗ, необходимо провести преобразование исходной схемы замещения относительно точки К1 (рис.4, а). При преобразовании треугольника сопротивлений ХТ1, ХТ2 и ХР. В звезду (рис.4, б) получаем:

(0,328·0,328) / 0,328 + 0,328 + 0,32) = 0,12

(0,328·0,32) / 0,328 + 0,328 + 0,32) = 0,11 (рис. 5,а).

Далее складываем последовательно:

Рис.5.Этапы преобразования схемы замещения

При параллельном сложении сопротивлений 4 и 5 и последующим последовательным сложением результата с сопротивлением 3 получим (рис.5, в):

(0,185 ·0,283) / (0,185 +0,283) + 0,11 = 0,22 (рис.6).

Далее определяем ток:

В именованных единицах IГ2, С = 5,5 ·4,55 = 25,025 кА

I = Iг1 + IГ2, С = 31,79 + 25,025 = 56,815 кА.

Что меньше тока без секционного реактора (87,56 кА).

1. Установка секционного реактора снижает токи КЗ до уровня, позволяющего применить в ГРУ 10 кВ ТЭЦ выключатели, выпускаемые заводами, или более дешевые выключатели, если ток на шинах ГРУ не превышал 63 кА до установки СР.

2. Снижение уровня токов КЗ с помощью СР обеспечивает меньший нагрев кабелей местной нагрузки ТЭЦ в условиях КЗ в кабельной сети.

|следующая лекция ==>
ТЕПЛОПРОВОДНОСТЬ В ГАЗАХ|Электрические аппараты (ЭА)

Дата добавления: 2016-10-07 ; просмотров: 3097 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как работают устройства автоматики включения резерва (АВР) в электрических сетях

В статье, описывающей работу устройств АПВ, рассмотрены случаи пропадания электроэнергии по различным причинам и методы ее восстановления автоматикой линий электропередач в том случае, когда причины создания аварийных ситуаций самоустранились и перестали действовать.

Птица, пролетающая между проводами воздушной ЛЭП, может создать короткое замыкание через свои крылья. Это повлечет снятие напряжения с ВЛ отключением от защит силового выключателя на питающей подстанции.

Устройства АПВ через несколько секунд восстановят питание потребителей электроэнергией, а защиты в этот момент уже не отключат его потому, что пораженная током птица успеет упасть на землю.

Однако, если на воздушную ЛЭП от порыва ураганного ветра упадет рядом выросшее дерево, сломав опору, то произойдет длительное короткое замыкание, оборвутся провода, которые исключат быстрое автоматическое восстановление электроснабжения подключенных объектов.

Поломка опоры ВЛ-110 кВ

Все потребители этой линии не смогут получать питание до полного окончания ремонтных работ, которые могут растянуться на несколько суток…

Представим, что такое повреждение произошло на линии, которая снабжает электроэнергией районный город с большими производственными мощностями, например, использующими электрические печи в автоматическом режиме для плавки стекла.

С отключением электроэнергии плавильные ванны перестанут работать, а все жидкое стекло затвердеет. В итоге предприятие потерпит огромные материальные убытки, будет поставлено перед необходимостью остановки производства, проведения дорогостоящего ремонта…

Чтобы избежать подобных ситуаций на всех крупных производственных объектах предусматривается источник резервного электропитания, состоящий из дублирующей линии электропередачи от другой подстанции или собственная мощная генераторная установка.

На питание от нее потребуется переходить быстро и надежно. Для этого используются устройства автоматического включения резерва, сокращенно называемые АВР.

Принцип работы автоматического включения резерва

Таким образом, рассматриваемая автоматика предназначена для бесперебойного снабжения ответственных потребителей электроэнергией при возникновении серьёзных аварий на основной питающей линии за счет быстрого задействования резервного источника.

Требования, предъявляемые к АВР

Устройства автоматики ввода резервного питания должны срабатывать:

максимально быстро после потери электроэнергии на основной линии;

при любом пропадании напряжения на собственных шинах потребителя без анализа причин возникшей неисправности, если не предусмотрена блокировка запуска от определенного вида защит. Например, дуговая защита шин должна блокировать запуск АВР с целью предотвращения развития возникшей аварии;

с необходимой задержкой при выполнении определенных технологических циклов. Например, во время включения под нагрузку мощных электродвигателей возможна «просадка» напряжения, которая быстро заканчивается;

всегда только однократно, ибо иначе возможно многократное включение на не устраняемое короткое замыкание, способное полностью разрушить сбалансированную электрическую систему.

Естественным требованием, необходимым для надежной работы схемы, является постоянное поддержание ее в исправном состоянии и контроль технических параметров в автоматическом режиме.

Преимущества схемы АВР над параллельным питанием от двух источников

На первый взгляд, для питания ответственных потребителей можно вполне обойтись их одновременным подключением к двум разным линиям, берущих энергию от разных генераторов. Тогда при аварии на одной из ВЛ эта цепочка разорвется, а другая останется в работе и будет осуществлять бесперебойное питание.

Примеры схем подключения потребителей

Такие схемы уже создавались, но не получили массового практического применения из-за следующих недостатков:

при возникновении коротких замыканий на любой линии токи значительно увеличиваются за счет подпитки энергией от обоих генераторов;

на питающих трансформаторных подстанциях увеличиваются потери мощности;

значительно усложняется схема управления электроснабжением за счет использования алгоритмов, одновременно учитывающих состояние потребителя и двух генераторов, возникновения перетоков мощностей;

сложность реализации защит, взаимосвязанных алгоритмами на трех удаленных концах.

Поэтому питание потребителя от одного основного источника и автоматический переход на резервный генератор при пропадании напряжения считается наиболее перспективным. Время перерыва в энергоснабжении при этом способе может быть менее 1 секунды.

Особенности создания схем АВР

Для работы автоматики может быть заложен один из следующих алгоритмов:

одностороннее питание от рабочей станции с нахождением в горячем резерве дополнительной, вводимой в работу только при пропадании напряжения от основного источника;

возможности двухстороннего использования любого из источников в качестве рабочей станции;

способности схемы АВР автоматически возвращаться на питание от основного источника после восстановления напряжения на шинах входящего выключателя. При этом создается последовательность срабатывания силовых коммутационных устройств, исключающих возможность подключения потребителя в режим параллельного питания от двух источников;

простая схема АВР, исключающая переход на режим восстановления питания от основного источника в автоматическом режиме;

ввод резервного питания должен происходить только в том случае, когда приняты меры подачи напряжения на поврежденный силовой элемент основного питания отключением соответствующего выключателя.

В отличие от автоматики АПВ устройства АВР показывают наибольшую эффективность при пропадании питания, оцениваемую в 90÷95%. За счет этого они широко применяются в системах энергоснабжения промышленных предприятий.

Автоматическое включение резерва применяется для питания линий электропередач, трансформаторов (силовых и собственных нужд), секционных выключателей.

Виды АВР

Принципы, заложенные в работу АВР

Для анализа напряжения на линии основного питания используется измерительный орган, состоящий из реле контроля напряжения РКН в комплексе с измерительным трансформатором и его цепями. Высоковольтное напряжение первичной сети, пропорционально преобразованное во вторичную величину 0÷100 вольт, поступает на обмотку контролирующего реле, которое выполняет роль пускового органа.

Настройка уставок реле РКН имеет особенность: требуется учитывать низкий необходимый уровень срабатывания пускового органа, обеспечивающего снижение напряжения до 20÷25% номинальной величины.

Это связано с тем, что при близких коротких замыканиях происходит кратковременное «проседание напряжения», ликвидируемое срабатываниями токовых защит. А пусковые органы РКН необходимо отстраивать от этих процессов. Но при этом нельзя использовать обычные типы реле из-за их неустойчивой работы на начальном пределе шкалы.

Для эксплуатации в пусковых органах АВР используются специальные конструкции реле, исключающие вибрации и дребезг контактов при срабатывании на нижних пределах.

Когда питание оборудования происходит нормально по основной схеме, то реле контроля напряжения просто отслеживает этот режим. Стоит только напряжению исчезнуть, как РКН переключает свои контакты и этим выдает сигнал на электромагнит включения соленоида резервного выключателя для ввода его в работу.

При этом соблюдается определенная последовательность срабатывания силовых элементов первичной схемы, которая заложена в логику управления системы АВР при ее создании и настройке.

Кроме пропадания напряжения на основной линии питания, для полного срабатывания пускового органа АВР обычно необходимо выполнить проверку еще нескольких условий, например:

отсутствие неустраненного КЗ на защищаемой зоне;

включение вводного выключателя;

наличие напряжения на резервной линии питания и некоторые другие.

Все пусковые факторы, введенные для срабатывания АВР, проверяются в алгоритме логики и при соблюдении необходимых условий выдается команда на исполнительный орган с учетом выставленной временно́й уставки.

Примеры выполнения некоторых схем АВР

В зависимости от величины рабочего напряжения системы и сложности конфигурации сети схема АВР может иметь разную структуру, выполняться на постоянном или переменном оперативном токе или обходиться вообще без него за счет использования основного напряжения сети в схемах 0,4 кВ.

АВР высоковольтной линии на постоянном оперативном токе

Кратко рассмотрим логику работы релейной схемы резервирования питания линии с основным источником питания №1.

Принцип работы АВР линии 30 кВ

Если на участке Л-1 произойдет КЗ, то защиты отключат выключатель В-1 и на шинах присоединения пропадет напряжение. Реле минимального напряжения «Н

От его контактов запустятся команды на срабатывание целого ряда реле, выполняющих различные функции контроля и выдачи управляющего сигнала на соленоид включения силового выключателя В-2.

В схеме обеспечивается однократность действия и выдача информации о срабатываниях сигнальными реле.

АВР секционного выключателя на постоянном оперативном токе

Рабочие силовые трансформаторы Т1 и Т2 запитывают свою секцию шин, разъединенных секционным выключателем В-5.

Принцип работы двухстороннего АВР секционного выключателя

При отключении или выводе из работы любого из этих трансформаторов подача питания на отключенный участок осуществляется коммутацией выключателя В-5. Реле РПВ обеспечивает однократность действия АПВ.

Работа схемы построена на взаимодействии блок-контактов выключателя с подачей + опер тока на обмотки реле РПВ и сигнальные блинкера. Здесь же предусмотрено оперативное ускорение ОУ, вводимое в работу на время выполнения переключений дежурным персоналом.

Принцип формирования логики работы АВР может быть изменен. Например, при эксплуатации схемы с включением дополнительного секционного выключателя, как показано на картинке ниже, потребуются дополнительные пусковые и логические элементы.

Пример схем подключения шин 10 кВ секционными выключателями

АВР секционного выключателя на переменном оперативном токе

Особенности работы автоматики на источниках, использующих энергию от расположенных на подстанции измерительных ТН, можно оценить по следующей схеме.

Схема двухстороннего АВР

Здесь контроль напряжения на каждой секции выполняют реле 1РН и 2РН. Их контакты запускают в работу органы отсчета времени 1РВ или 2РВ, которые воздействуют через блок-контакты и обмотки блинкеров на соленоиды силовых выключателей.

Принцип выполнения АВР потребителей сети 0,4 кВ

При создании резервного питания трехфазной сети используют магнитные пускатели КМ1, КМ2 и реле минимального напряжения kV, контролирующее параметры основной линии Л1.

Обмотки пускателей подключены от одноименных фаз своих линий через коммутационные контакты логики к заземленному нулю, а силовые контакты врезаны в шины питания потребителя с обеих сторон.

Схема АВР 0,4 кВ

Контактная система реле напряжения в любом положении подключает в сеть только один какой-то пускатель. При наличии напряжения на линии Л1 kV сработает и своим замыкающим контактом включит обмотку пускателя КМ1, который своей силовой цепью будет запитывать потребителя и подключит свою сигнальную лампочку, одновременно выводя из работы обмотку КМ2.

При пропадании напряжения на Л1 реле kV разрывает цепь питания обмотки пускателя КМ1 и запускает КМ2, выполняющего для линии Л2 те же функции, что и КМ1 для своей цепочки в предыдущем случае.

Силовые рубильники QF1 и QF2 служат для полного снятия напряжения со схемы.

Этот же алгоритм может быть взят за основу для создания питания ответственных потребителей в сети однофазного питания. Просто в нем надо исключить лишние элементы и применить однофазные пускатели.

Особенности современных комплектов АВР

Для объяснения принципов построения алгоритмов автоматики была намеренно использована старая релейная база, позволяющая более доступно понять работающие алгоритмы.

Современные статические и микропроцессорные устройства работают по этим же схемам, но имеют улучшенный вид, меньшие габариты, обладают более удобными настройками и возможностями.

Их создают отдельными блоками или целыми комплектами, собранными в специальных модулях.

Реле напряжения

Для промышленного использования комплекты АВР выпускают полностью готовыми к использованию комплектами, размещенными в специальных защищенных корпусах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector